matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieModulogleichungssystem lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Modulogleichungssystem lösen
Modulogleichungssystem lösen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modulogleichungssystem lösen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:03 Fr 11.11.2016
Autor: Attila

Aufgabe
Für alle $ c,d [mm] \in \mathbb [/mm] {Z} $ gibt es ein $ w [mm] \in \mathbb [/mm] {Z} $ mit
(*) $ [mm] w\equiv [/mm] c (mod n) [mm] \wedge [/mm] w [mm] \equiv [/mm] d (mod m) $. Zudem gelte $ ggT (m,n) = 1 $.
Bestimmen Sie alle Lösungen w in den ganzen Zahlen von (*).

Hallo,
ich habe die Aufgabe die w's zu finden, die oben die beiden Gleichungen erfüllen. Ich hatte erst versucht jeweils über die Division mit Rest w zu schreiben einmal über m und über n, also etwa $ w = qn+ r [mm] \wedge [/mm] w = sm + t $. Allerdings war dies nicht sehr erfolgreich, da ich zum Schluss oft auf Brüche kam, die nicht unbedingt zielführend waren. Hättet ihr da einen Tipp?
Viele Grüße
Attila

        
Bezug
Modulogleichungssystem lösen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:45 Sa 12.11.2016
Autor: Attila

Hallo,
fehlt eventuell etwas? Ich verlinke nochmal, wo ich das her habe, vielleicht bringt das etwas []S.9 Aufgabe 18.
Viele Grüße
Attila

Bezug
                
Bezug
Modulogleichungssystem lösen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:32 So 13.11.2016
Autor: Attila

Hallo,
ich habe jetzt gefunden, wie man es lösen kann, allerdings hake ich da an einer Stelle. Es findet sich hier:  []Direktes Lösen von simultanen Kongruenzen ganzer Zahlen. Hier hänge ich daran, dass die Lösungen, falls diese existieren Gestalt $x [mm] \equiv [/mm] a - [mm] yn\frac{a-b}{d} [/mm] mod [mm] (\frac{nm}{d})$ [/mm] haben. Kann mir das jemand erklären?
Viele Grüße
Attila

Bezug
                        
Bezug
Modulogleichungssystem lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:57 So 13.11.2016
Autor: Attila

Hat sich erledigt. Läuft alles über den chinesischen Restsatz.
Viele Grüße
Attila

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]