matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraModulofunktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Modulofunktionen
Modulofunktionen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modulofunktionen: Frage...
Status: (Frage) beantwortet Status 
Datum: 18:55 Sa 11.12.2004
Autor: Kaputtnik

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wir haben folgende Aufgabe gestellt gekriegt:
Zeigen Sie, dass für eine positive Zahl n gnau dann  [mm] \summe_{i=1}^{n-1} i^{2}\equiv0 [/mm] mod n   gilt, wenn  [mm] n\equiv1mod6 [/mm]   oder  [mm] n\equiv-1mod6 [/mm]   gilt.

Bisher bin ich so weit, dass n=6m+1 bzw. n=6m+5 sein muss. (nicht sicher ist, ob wirklich gilt [mm] 6*m+5\equiv-1mod6 [/mm] )

Sowie:  [mm] \summe_{i=1}^{n-1} i^{2}=\bruch{n(n-1)(2n-1)}{6} [/mm]

Jetzt hab ich einmal eingesetzt n=6m+1 und n=6m+5:

-> [mm] =\bruch{6m+1(6m)(12m)}{6}=\bruch{(36 m^{2})(12m+1)}{6} [/mm] für n=6m+1
sowie   [mm] \bruch{6m+5(6m+4)(12m+9)}{6}=\bruch{(36 m^{2}+54m)(12m+9)}{6} [/mm] für n=6m+5.

Meine Frage wär jetzt, ob es reicht zu zeigen, dass das Ergebnis in  [mm] \IZ [/mm] liegt, oder ob man (was ich glaube) zeigen muss, dass der term durch n teilbar ist. Allerdings stellt sich hier die Frage, ob die Division richtig ist:

(Zähler durch n) [mm] =6m(12m+1)=72m^{2}+6m [/mm] für n=6m+1
sowie [mm] (6m+4)(12m+9)=72m^{2}+102m+36=12m^{2}+17m+6 [/mm] für n=6m+5

kann man das so schreiben? Kommt mir trotzdem noch akut spanisch vor.

        
Bezug
Modulofunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Sa 11.12.2004
Autor: Hanno

Hallo Kaputtnik!

[willkommenmr]

> Zeigen Sie, dass für eine positive Zahl n gnau dann  $ [mm] \summe_{i=1}^{n-1} i^{2}\equiv0 [/mm] $ mod n   gilt, wenn  $ [mm] n\equiv1mod6 [/mm] $   oder  $ [mm] n\equiv-1mod6 [/mm] $   gilt.
> Bisher bin ich so weit, dass n=6m+1 bzw. n=6m+5 sein muss. (nicht sicher ist, ob wirklich gilt $ [mm] 6\cdot{}m+5\equiv-1mod6 [/mm] $ )

> Sowie:  $ [mm] \summe_{i=1}^{n-1} i^{2}=\bruch{n(n-1)(2n-1)}{6} [/mm] $

Das ist genau richtig! [ok]

> ...
> Meine Frage wär jetzt, ob es reicht zu zeigen, dass das Ergebnis in  $ [mm] \IZ [/mm] $ liegt, oder ob man (was ich glaube) zeigen muss, dass der term durch n teilbar ist.

Letzteres ist schonmal richtig, d.h. der Term [mm] $\bruch{n(n-1)(2n-1)}{6}$ [/mm] muss ein Vielfaches von $n$ sein. Wäre dem nicht so, dann muss in $ggT(n,6)>1$ gelten (denn sonst würde kein Primfaktor aus n gekürzt). Da aber [mm] $n=6m\pm [/mm] 1$ ist, gilt in jedem Falle $ggT(n,6)=1$ und somit bleiben alle Primfaktoren von n erhalten, d.h. also, dass [mm] $\bruch{n(n-1)(2n-1)}{6}\equiv 0\pmod{n}$ [/mm] gilt.

Letzteres ist zwar richtig, doch noch nicht die komplette Lösung. Es gilt zu zeigen, dass die Aussagen  [mm] $A:\quad\summe_{i=1}^{n-1} i^{2}\equiv0 \pmod{n}$ [/mm] und [mm] $B:\quad n\equiv 1\pmod{6}\vee n\equiv -1\pmod{6}$ [/mm] äquivalent sind. Wir haben gerade die Rückrichtung gezeigt.

Was nun noch von dir zu zeigen bleibt, ist, dass aus  [mm] $\bruch{n(n-1)(2n-1)}{6}\equiv 0\pmod{n}$ [/mm] auch sofort [mm] $n\equiv 1\pmod{6}\wedge n\equiv -1\pmod{6}$ [/mm] folgt. Das allerdings lässt sich mit einem leichten Argument beweisen. Schaffst du das?

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]