matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieModulo
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Modulo
Modulo < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modulo: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:56 So 05.02.2006
Autor: karsten19777

Aufgabe
Berechnen sie zwei verschiedene Lösungen der Kongruenz:
34x==25(mod 131)

Hi,

ich weiß zwar was die Lösung ist (20 u. 151)habe auber keine Ahnung wie der Rechenweg ist bzw. wie die Aufgabe zu lösen ist.

Hoffe ihr könntet mir helfen.

Gruß Karsten


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://matheplanet.com/

        
Bezug
Modulo: euklidischer Algorithmus
Status: (Antwort) fertig Status 
Datum: 19:58 So 05.02.2006
Autor: mathmetzsch

Hallo,

das macht man typischerweise mit dem euklidischen Algorithmus.

Sei [mm] ax\equiv [/mm] b(modm) und [mm] x_{0} [/mm] davon eine Lösung. Dann erhält man alle verschiedenen Lösungen durch

[mm] x_{0}+\lambda\bruch{m}{ggT(a,b)} [/mm] mit [mm] \lambda=0,1,...,ggT(a,m)-1 [/mm]

Ein solches [mm] x_{0} [/mm] findet man nach endlich vielen Schritten mit dem euklidischen Algorithmus. Schreibe [mm] a*x_{0}-b=\lambda*m. [/mm] Das sollte dir jetzt bekannt vorkommen.

PS: Man kann das auch als diophantische Gleichung betrachten, die man sehr einfach lösen kann!

Viele Grüße
Daniel

Bezug
                
Bezug
Modulo: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Mo 06.02.2006
Autor: karsten19777

Hi Daniel,

leider weiß ich nicht wie du das genau meinst. ich kann mit deiner formel nichts anfangen, sorry.
wäre super wenn du mir das irgendwie ein bissl vorrechnen könntest.

also das mit dem euklidischen algorithmus, da komme ich auf 25*(-7)*131 + (25*27)*34 = 25.

und wie gehts dann weiter?

Bezug
                        
Bezug
Modulo: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mo 06.02.2006
Autor: mathmetzsch

Hallo,

stelle die Gleichung z.B. so um

[mm] a*x_{0}-\lambda*m=b. [/mm] Diese dG kannst du lösen, oder? Dafür könnte dieser link hilfreich sein:

[]http://www.arndt-bruenner.de/mathe/scripts/diophant.htm

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]