matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationModellsuche zur Integralrechnu
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Modellsuche zur Integralrechnu
Modellsuche zur Integralrechnu < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modellsuche zur Integralrechnu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Di 15.10.2013
Autor: Gosset

Aufgabe
Im Boden eines mit Wasser gefüllten geradzylindrischen Gefäßes befindet sich eine rechteckige Öffnung mit den Seiten a=0,5m und b=0,2m die mit einer Klappe verschlossen ist. Diese Klappe möge zur Zeit T=0 beginnend gleichmäßig parallel den Längsseiten der Öffnung mit der Geschwindigkeit v=0,02m/s zur Seite gleiten und so die Öffnung freigeben. Um welchen Betrag x1 senkt sich der Wasserstand der Zeit t1, in der die Klappe die Öffnung vollständig freigegeben hat (t1=b/v) wenn die ursprüngliche Höhe H des Wasserstandes 3m betragen und der Flächenquerschnitt [mm] F=1m^3 [/mm] ist?

Anleitung: Für die Abflussgeschwindigkeit c aus der Öffnung gilt c= 0,61*sqrt(2*g*h), wenn h die Höhe der Wassersäule über der Öffnung in m bezeichnet und g die Erdbeschleunigung ist [mm] (g=9,81m/s^2) [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt:

Hallo,
hoffe ich bin halbwegs im richtigen Unterforum ;)

Es geht um die Modellbildung, die ich leider nicht ganz hinbekomme, bin schon etwas verzweifelt. Ich denke ich muss dh/dt=c ansetzen dann integrieren.

Fläche der Öffnung = [mm] 0,2*0,5=0,1m^2 [/mm]

h(t=0)=0
h(t=t1=10s)=?

dh/dt=c(h) ---> dh/c=dt -> integrieren aber dann fehlt ja noch die zeitabhängigkeit der Öffnungsfläche A(t)?

mfg
Gosset

        
Bezug
Modellsuche zur Integralrechnu: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Di 15.10.2013
Autor: leduart

Hallo
rechne doch erstmal in kleinen Zeitschritten.
zB: nach 0.1s ist die Öffnung  v*0,01*b groß wieviel fliesst in den 0.1s raus?
dasselbe mit [mm] \Delta [/mm] t statt 0.1s.
wie ändert sich dabei h
Schlimmstenfalls überlege 3 Teilschritte mit [mm] \Delta [/mm] t , dann solltest du die Lösung finden
allgemein, wenn t1 verstrichen ist und die Höhe h1 ist was fließt im nachsten Moment aus, wie ändert sich also die Hühe.
Gruss leduart

Bezug
                
Bezug
Modellsuche zur Integralrechnu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:44 Di 15.10.2013
Autor: Gosset

A(t)=v*b*t für kleine Intervalle von t [mm] \limes_{dt\rightarrow\ 0} [/mm] A(t) kommt man zur Ableitung A'(t)=v*b

c*A' wäre dann das Volumen pro Sekunde [mm] (m^3/s) [/mm]

dh/dt=c*A' --> 0,74*sqrt(h)=(0,02*0,2)*t  ---->h(t=10)=0,00292

kann das stimmen?

Bezug
                        
Bezug
Modellsuche zur Integralrechnu: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Mi 16.10.2013
Autor: chrisno

Da musst Du langsamer und gründlicher herangehen. Es passieren im Wesentlichen zwei Dinge gleichzeitig, die zur Formulierung einer Differentialgleichung führen. Wenn diese gefunden ist, dann kann deren Lösung gesucht werden.
Zum Einen:
Sobald das Wasser heraus fließt, sinkt auch der Wasserstand. Damit nimmt die Auflussgeschwindigkeit ab. Der Wasserstand wird also langsamer sinken.
Zum Anderen:
Während das Wasser heraus fließt, wird die Austrittsöffnung vergrößert. Also fließt zunehmend mehr Wasser pro Sekunde heraus.
Welcher der beiden Effekte überwiegt, wird die Rechnung zeigen.

Also setze an: Gegeben ist die Höhe h und die Öffnung A. Daraus folgt die Ausströmgeschwindigkeit v. Wie groß ist h nach einer Zeit $Delta t$? Wie groß ist A nach dieser Zeit, wie groß v mit den neuen Werten von h und A?

Bezug
                                
Bezug
Modellsuche zur Integralrechnu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Mi 16.10.2013
Autor: Gosset

dh/dt *dA/dt = c

dh/dt* dt/dA = c

dh/dA = c

dh/dt *1/(b*v)=c

dh/(b*v*c)=dt

dh von 3 bis h und dt von 0 bis 10s

h=2,815m

also 3m-2,815m=0,185m ? oder wieder falsch?

Bezug
                                        
Bezug
Modellsuche zur Integralrechnu: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Mi 16.10.2013
Autor: leduart

Hallo
> dh/dt *dA/dt = c

wie kommst du darauf? c ist doch eine Geschw, dh/dt auch, was ist dA/dt

> dh/dt* dt/dA = c links steht etwas mit der Dimensiom 1/m rechts m/s

was hat die Gl mit der vorigen zu tun?
den Rest verstehe ich auch nicht.
Gruss leduart

> dh/dA = c
>  
> dh/dt *1/(b*v)=c
>  
> dh/(b*v*c)=dt
>  
> dh von 3 bis h und dt von 0 bis 10s
>  
> h=2,815m
>  
> also 3m-2,815m=0,185m ? oder wieder falsch?


Bezug
                                                
Bezug
Modellsuche zur Integralrechnu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mi 16.10.2013
Autor: Gosset

dh/dt - Änderung der Höhe des Wasserstandes mit der Zeit
c(h) ... Ablussgeschwindigkeit
dA/dt ... Änderung der Fläche nach der Zeit => A'=v*b

dh/dt = c * (dA/dt)

dh/dt = c* A'

dh = c*A'*dt



Bezug
                                                        
Bezug
Modellsuche zur Integralrechnu: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Mi 16.10.2013
Autor: chrisno

Zuerst rate ich Dir, die Einheiten zu überprüfen. Deine Gleichung für dh kann auch schon deshalb nicht stimmen, weil der Querschnitt des Gefäßes nicht vorkommt.

Bitte lies meine vorige Mitteilung. Wenn Du weiterhin einfach so Gleichungen hinschreibst, werde ich mich nicht mehr beteiligen.

Bezug
                                                                
Bezug
Modellsuche zur Integralrechnu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Mi 16.10.2013
Autor: Gosset

"Also setze an: Gegeben ist die Höhe h und die Öffnung A. Daraus folgt die Ausströmgeschwindigkeit v. Wie groß ist h nach einer Zeit $ Delta t $? Wie groß ist A nach dieser Zeit, wie groß v mit den neuen Werten von h und A?"




Daraus werde ich nicht ganz schlau, die Ausströmgeschwindigkeit hängt ja nur von der Höhe ab c(h) [mm] [m^2/s^2] [/mm] sonst sind ja nur konstanten drinnen? wie groß ist dh/dt das wäre eine df(h)/dt wobei ich nur die Ausflussgeschwindigkeit habe?

Bezug
                                                                        
Bezug
Modellsuche zur Integralrechnu: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Mi 16.10.2013
Autor: chrisno

Da hast Du recht, ich war schlampig. Unterscheide zwischen der Ausströmgeschwindigkeit (in m/s) und dem Volumenstrom (in [mm] $m^3$/s). [/mm]

Bezug
                                                                                
Bezug
Modellsuche zur Integralrechnu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:55 Do 17.10.2013
Autor: Gosset

Ich komm leider trotzdem nicht weiter:

V...Volumensstrom [mm] m^3/s [/mm]
c...Abflussgeschindigkeit (warum ist die nicht in m/s sondern [mm] m/s^2?) [/mm]
A...Ausflussfläche [mm] m^2 [/mm]
F ... Zylinderfläche

-dH/dt *F = c(H)*A'

dH=(-c*A')/F

[mm] \integral_{3}^{h}{dH} =\integral_{0}^{10}{(-c*A')/F dt} [/mm]

h=1,62m

d.H. x=3-1,62=1,38

Ich hoffe irgendjemand kann das bestätigen?

Bezug
                                                                                        
Bezug
Modellsuche zur Integralrechnu: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Do 17.10.2013
Autor: chrisno


> Ich komm leider trotzdem nicht weiter:
>  
> V...Volumensstrom [mm]m^3/s[/mm]
>  c...Abflussgeschindigkeit (warum ist die nicht in m/s
> sondern [mm]m/s^2?)[/mm]

Die hat die Einheit m/s. Wie kommst Du zu Deiner Aussage?

>  A...Ausflussfläche [mm]m^2[/mm]
>  F ... Zylinderfläche
>  
> -dH/dt *F = c(H)*A'

Kontrolliere die Einheiten: [mm] $1\bruch{m}{s} \cdot m^2 \ne 1\bruch{m}{s}\cdot\bruch{m^2}{s}$ [/mm]

>  

mit
[mm] $-F\bruch{dh}{dt} [/mm] = c(h) [mm] \cdot [/mm] A(t)$
wird es besser. Nun wird c(h) eingesetzt:
[mm] $-F\bruch{dh}{dt} [/mm] = [mm] 0,61*\sqrt{2 g h} \cdot [/mm] A(t)$


Bezug
                                                                                                
Bezug
Modellsuche zur Integralrechnu: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Do 17.10.2013
Autor: Gosset

Danke für die Hilfe, ich hatte vergessen die Wurzel der Einheiten zu berücksichtigen und mich die ganze Zeit gefragt warum eine Geschwindigkeit in [mm] m^2/s^2 [/mm] gegeben ist ;)

So ergibt die Sache durchaus Sinn.

danke schön



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]