matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenMitternachsformel in C
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "komplexe Zahlen" - Mitternachsformel in C
Mitternachsformel in C < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mitternachsformel in C: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Mo 19.10.2009
Autor: marike

Hallo Beisammen,

ich habe da folgende Aufgabenstellung

[a]Datei-Anhang

zu. a.) Wie soll ich beweisen das P(z) in eine Produktform geschrieben werden kann?

zu.b.)+/- [mm] i\wurzel{(b/2)^2 - 4*a*c} [/mm] stimmt mein ansatz, also wenn D=0 eine reelle Lösung wenn D>0 dann zwei reelle lösungen und wenn D<0 dann zwei komplexe lösungen?

zu c. p(z)= [mm] a_n*(z_1-\lambda)*(z_2-\lambda).....(z-\lambda) [/mm]  ???

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
Mitternachsformel in C: zu Aufg. a)
Status: (Antwort) fertig Status 
Datum: 20:11 Mo 19.10.2009
Autor: Herby

Hallo,

setz' mal [mm] z_0=\wurzel{b^2-4ac} [/mm] in die rechte Seite ein und multipliziere dann die Klammern aus.


Lg
Herby

Bezug
                
Bezug
Mitternachsformel in C: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Mo 19.10.2009
Autor: marike

hallo herby, erstmal vielen dank für deine hilfe,

zu a, habe [mm] z_0 [/mm] entsprechend eingesetz und
tatsächlich :
= [mm] az^2 [/mm] +bz + a herausbekommen

Bezug
                        
Bezug
Mitternachsformel in C: prima!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Mo 19.10.2009
Autor: Herby

Hi,

> hallo herby, erstmal vielen dank für deine hilfe,
>  
> zu a, habe [mm]z_0[/mm] entsprechend eingesetz und
>  tatsächlich :
>  = [mm]az^2[/mm] +bz + a herausbekommen

du meinst [mm] az^2+bz+\red{c} [/mm] ---  hoffentlich, dann ist diese Aufgabe ja schon mal erledigt. Bei der anderen geht es genauso [kleeblatt]


Lg
Herby

Bezug
                                
Bezug
Mitternachsformel in C: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Mo 19.10.2009
Autor: marike

ja ich meinte natürlich c statt a ....

danke für deine hilfe

aufgabe c ist hinfällig...

Bezug
        
Bezug
Mitternachsformel in C: zu Aufg. b)
Status: (Antwort) fertig Status 
Datum: 21:00 Mo 19.10.2009
Autor: Herby

Hallo Marike,

bei b) ist doch D<0, also kannst du den Ansatz:

[mm] \lambda_{1,2}=-\bruch{b \pm i*\wurzel{4ac-b^2}}{2a} [/mm] mal in das Produkt [mm] (\lambda-\lambda_1)*(\lambda-\lambda_2)=..... [/mm] einsetzen.

Müsste klappen :-)


Liebe Grüße
Herby

ps: Aufgabe c) ist etwas unübersichtlich von der Aufgabenstellung her ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]