matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationMittelwertsatz im R^n
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Mittelwertsatz im R^n
Mittelwertsatz im R^n < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz im R^n: Frage zu einem Beweis
Status: (Frage) beantwortet Status 
Datum: 16:23 Do 29.06.2006
Autor: Mamahai

Aufgabe
Sei f:  [mm] \IR^h [/mm] -> R eine Funktion, so dass f(t*x) = t * f(x) für alle reellen Zahlen t und alle Vektoren x aus  [mm] \IR^n. [/mm] f ist an allen Vektoren total differenzierbar.

Zu zeigen: Für alle y aus  [mm] \IR^n: [/mm] f(y)=< grad f(y), y >, wobei <  ,   > das euklid. Skalarprodukt ist.

Ich habe den Beweis dieser Aufgabe nur leider verstehe ich einen Schritt nicht. Vielleicht kann mir jemand dabei helfen.

Beweis:
Sei y aus  [mm] \IR^n [/mm] beliebig.

Falls y=0, ist es klar.
Also sei y ungleich Null.

Setze x1=0 und x2 = y.
Nach MWS existiert ein t aus (0,1):
        f(y)-f(0) = < grad f(t*y), y-0>
    =         F(y)= < gradf(t*y),y>

Bleibt zu zeigen:
  grad f (t*y) = grad f(y)
Es gilt f(t*x) = t* f(x)

[Und nun kommt mein Problem:]
(mit part. Abl. in x-Richtung)=>
Für alle i=1,...,n : t*( Df/D xi (t*x)) = t* (Df/D xi (x)) ???

=> (Df/Dxi (t*x)) = (Df/D xi (x))
=> grad f(t*x) = grad f(x)
=> Behauptung.

Die gekennzeichnete Umformung versteh ich nicht.Vielleicht kann mir die jemand erklären.
Danke im Voraus.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Mittelwertsatz im R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Do 29.06.2006
Autor: MatthiasKr

Hallo,

kommt dieser Beweis aus einer Musterlösung/ einem Buch, oder doch eher von einem Kommilitonen.... ich finde ihn jedenfalls nicht sehr elegant und schwer zu verstehen, was aber auch daran liegen mag, dass du den formeleditor nicht benutzt hast....

wie dem auch sei, unter benutzung der kettenregel ist der beweis ein ein-zeiler:

[mm] $f(t\cdot x)=t\cdot [/mm] f(x), [mm] \forall [/mm] t,x$


leite beide seiten nach t ab (links brauchst du die kettenregel):

[mm] $\Rightarrow \; <\nabla [/mm] f(tx),x>=f(x)$

da t beliebig ist, setze t=1 und folgere

[mm] $<\nabla [/mm] f(x),x>=f(x)$

Ich denke, dieser beweis ist deutlich einfacher und auch eleganter.

Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]