matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationMittelwertsatz der Integralr.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - Mittelwertsatz der Integralr.
Mittelwertsatz der Integralr. < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz der Integralr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Mi 23.01.2008
Autor: Wimme

Also ich habe eine Verständnisfrage zu folgendem Satz:

Es sei f stetig und g Riemann integrierbar auf [a,b] mit g(x) [mm] \geq [/mm] 0 und x [mm] \in [/mm] [a,b] und [mm] \integral_{a}^{b}{g dx}>0. [/mm]
Dann existiert ein [mm] \gamma [/mm] (hab vergessen wir das "richtige" Ding heißt) [mm] \in [/mm] (a,b) abhängig von f und g mit

[mm] \integral_{a}^{b}{fg dx} [/mm] = [mm] f(\gamma)\integral_{a}^{b}{g dx} [/mm]

So, wie darf ich mir das anschaulich vorstellen?
Was genau ist überhaupt
[mm] \integral_{a}^{b}{fg dx} [/mm]
wie müsste ich diese Fläche einzeichnen?

Danke euch!!

        
Bezug
Mittelwertsatz der Integralr.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mi 23.01.2008
Autor: Somebody


> Also ich habe eine Verständnisfrage zu folgendem Satz:
>  
> Es sei f stetig und g Riemann integrierbar auf [a,b] mit
> g(x) [mm]\geq[/mm] 0 und x [mm]\in[/mm] [a,b] und [mm]\integral_{a}^{b}{g dx}>0.[/mm]
>  
> Dann existiert ein [mm]\gamma[/mm] (hab vergessen wir das "richtige"
> Ding heißt) [mm]\in[/mm] (a,b) abhängig von f und g mit
>  
> [mm]\integral_{a}^{b}{fg dx}[/mm] = [mm]f(\gamma)\integral_{a}^{b}{g dx}[/mm]
>  
> So, wie darf ich mir das anschaulich vorstellen?
>  Was genau ist überhaupt
> [mm]\integral_{a}^{b}{fg dx}[/mm]
>  wie müsste ich diese Fläche
> einzeichnen?

Ich glaube nicht, dass Du dieses Integral sinnvollerweise als Fläche unter einem anderen Graphen als dem von $fg$ auffassen kannst. Vielleicht hast Du in der Stochastik schon was von Wahrscheinlichkeitsdichten gehört. $g(x)$ könnte also z.B. eine solche Dichtefunktion sein. Das Integral [mm] $\int f(x)\cdot g(x)\; [/mm] dx$ könnte dann den Erwartungswert der Zufallsgrösse $f(x)$ darstellen. Der zusätzliche Faktor $g(x)$ bewirkt eine unterschiedliche "Gewichtung" beim "Aufintegrieren" der Werte von $f$.

Wie auch immer: Ich denke in diesem Falle würdest Du Deine "Intuition" am besten am konkreten Beweis orientieren: denn der ist ja recht einfach. Ist nämlich [mm] $\underline{f}=\min\{f(x)\mid x\in [a;b]\}$ [/mm] und [mm] $\overline{f}=\max\{f(x)\mid x\in [a;b]\}$, [/mm] dann gilt, wegen [mm] $g(x)\geq [/mm] 0$ für alle $x$, dass [mm] $\underline{f}\cdot g(x)\leq f(x)g(x)\leq \overline{f}\cdot [/mm] g(x)$. Mit der Monotonie des Integrals folgt sogleich

[mm]\underline{f}\cdot \int_a^b g(x)\;dx\leq \int_a^b f(x)\cdot g(x)\; dx\leq \overline{f}\cdot \int_a^b g(x)\; dx[/mm]

Der Zwischenwertsatz auf die stetige Funktion angewandt, liefert dann, dass es ein solches [mm] $\gamma\in [/mm] [a;b]$ mit [mm] $\underline{f}\leq f(\gamma)\leq \overline{f}$geben [/mm] muss, für das gilt [mm] $f(\gamma)\cdeot \int_a^bg(x)\; dx=\int_a^bf(x)\cdot g(x)\; [/mm] dx$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]