matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationMittelwertsatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - Mittelwertsatz
Mittelwertsatz < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 So 10.06.2012
Autor: Blaubart

Aufgabe
Ist die folgende Verallgemeinerung des Mittelwertsatzes für skalarwertige Funktionen auf di fferenzierbare Abbildungen  [mm] \vec{c}: [/mm] [a,b] [mm] \to \IR^{n} [/mm] mit n [mm] \in \IN [/mm] und a, b [mm] \in \IR, [/mm] a < b richtig?

Ist [mm] \vec{c}: [/mm] [a,b] [mm] \to \IR^{n} [/mm] stetig di fferenzierbar, dann gibt es eine Zwischenstelle z [mm] \in [/mm] (a,b) mit  [mm] \vec{c}(b)-\vec{c}(a)= \vec{c}'(z)(b-a) [/mm]
Begründen Sie entweder, weshalb diese Aussage gilt, oder geben Sie ein Gegenbeispiel an.
Bemerkung: Stetige Abbildungen [mm] \vec{c}: [/mm] [a; b] [mm] \to \IR^{n } [/mm] werden auch Kurven bzw. Parameterdarstellungen von Kurven im [mm] \IR^{n } [/mm] genannt.

Grüßt euch,
für mich sieht es so aus als ob man jetzt zeigen muss, dass die Abbildung [mm] \vec{c}: [/mm] [a,b] [mm] \to \IR^{n} [/mm] aus einer konvexen Menge besteht. Oder eben das Gegenteil beweisen. Leider tümmeln sich bei mir wieder nur die Fragezeichen bei solchen Aufgaben. Soll ich mir jetzt eine Funktion rauspicken die zwar stetig diffbar. ist, aber bei der Ableitung irgendwo lücken aufweisst (negative Wurzel, [mm] \bruch{xyz}{0})? [/mm]  
Und was hilft mir die Bemerkung?
Vielen Dank im Voraus.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mittelwertsatz: Tipps
Status: (Antwort) fertig Status 
Datum: 17:56 So 10.06.2012
Autor: Helbig


> Ist die folgende Verallgemeinerung des Mittelwertsatzes
> für skalarwertige Funktionen auf di fferenzierbare
> Abbildungen  [mm]\vec{c}:[/mm] [a,b] [mm]\to \IR^{n}[/mm] mit n [mm]\in \IN[/mm] und
> a, b [mm]\in \IR,[/mm] a < b richtig?
>  
> Ist [mm]\vec{c}:[/mm] [a,b] [mm]\to \IR^{n}[/mm] stetig di fferenzierbar,
> dann gibt es eine Zwischenstelle z [mm]\in[/mm] (a,b) mit  
> [mm]\vec{c}(b)-\vec{c}(a)= \vec{c}'(z)(b-a)[/mm]
>  Begründen Sie
> entweder, weshalb diese Aussage gilt, oder geben Sie ein
> Gegenbeispiel an.
>  Bemerkung: Stetige Abbildungen [mm]\vec{c}:[/mm] [a; b] [mm]\to \IR^{n }[/mm]
> werden auch Kurven bzw. Parameterdarstellungen von Kurven
> im [mm]\IR^{n }[/mm] genannt.
>  Grüßt euch,
>  für mich sieht es so aus als ob man jetzt zeigen muss,
> dass die Abbildung [mm]\vec{c}:[/mm] [a,b] [mm]\to \IR^{n}[/mm] aus einer
> konvexen Menge besteht. Oder eben das Gegenteil beweisen.
> Leider tümmeln sich bei mir wieder nur die Fragezeichen
> bei solchen Aufgaben. Soll ich mir jetzt eine Funktion
> rauspicken die zwar stetig diffbar. ist, aber bei der
> Ableitung irgendwo lücken aufweisst (negative Wurzel,
> [mm]\bruch{xyz}{0})?[/mm]  
> Und was hilft mir die Bemerkung?

"Glatte Kurven" kann man sich leichter vorstellen als "differenzierbare Abbildungen mit einem Intervall als Definitionsbereich". Guck Dir also Kurven im [mm] $\IR^2$ [/mm] an.

Gleichwertig zum Mittelwertsatz ist der Satz von Rolle. Nur den brauchst Du für den mehrdimensionalen Fall zu zeigen bzw. zu wiederlegen. Wie sieht eine Kurve aus mit [mm] $\vec c(a)=\vec [/mm] c(b)$ ?

Grüße,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]