matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationMittelwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Mittelwertsatz
Mittelwertsatz < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mo 23.01.2012
Autor: Lu-

Aufgabe
Man beweise mit Hilfe des Mittelwertsatzes der Differentialrechnung:
[mm] \forall [/mm] x > 0
x/(1+x) < ln (1+x) < x


Ich hab e angewendet
[mm] e^{\frac{x}{1+x}} [/mm] < 1 + x < [mm] e^x [/mm]

x < [mm] e^x [/mm] - 1
x > [mm] e^{\frac{x}{1+x}}-1 [/mm]


Mittelwertsatz ist mir bekannt. Sei f:[a,b] -> [mm] \IR [/mm] stetig, differenzierbar auf (a,b) => [mm] \exists x_0 \in [/mm] (a,b) : [mm] f'(x_0) [/mm] = [mm] \frac{f(b)-f(a)}{b-a} [/mm]

Wäre dankbar für jeden Gedankenanstoß ;))

        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Mo 23.01.2012
Autor: Gonozal_IX

Huhu,

erstmal dividieren wir den Spaß durch x (warum können wir das problemfrei machen?), dann steht da:

[mm] $\bruch{1}{1+x} [/mm] < [mm] \bruch{\ln(1+x)}{x} [/mm] < 1$

Ein bisschen mit Nullen rumspielen:

[mm] $\bruch{1}{1+x} [/mm] < [mm] \bruch{\ln(1+x) - \ln(1)}{x - 0} [/mm] < 1$

Und nun kannst du beide Abschätzungen problemfrei mit dem Mittelwertsatz sowie eines Monotonie-Arguments begründen.

MFG,
Gono.

Bezug
                
Bezug
Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Mo 23.01.2012
Autor: Lu-

Wie kommt man darauf, dass man das genau so umformt ;)?, dass es passt?


Bezug
                        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Mo 23.01.2012
Autor: Marcel

Hallo,

> Wie kommt man darauf, dass man das genau so umformt ;)?,
> dass es passt?

probieren. Das ist ein wenig Erfahrungssache - bzw. wie Gono auch geschrieben hat: Man spielt ein wenig mit 0en und sucht quasi "einen passenden Differenzenquotienten". Allerdings:
Die für $x > -1$ definierte Funktion
$$x [mm] \mapsto \ln(1+x)\;$$ [/mm]
einfach mal abzuleiten, kann einem schonmal weiterhelfen. Wichtig ist hier allerdings:
Betrachte hier immer, für jedes $x > [mm] 0\,,$ [/mm] die Einschränkung(en) dieser Funktion auf [mm] $[0,x]\,.$ [/mm]

Gruß,
Marcel  

Bezug
                                
Bezug
Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:50 Mo 23.01.2012
Autor: Lu-

danke ;)
So mal weiter..

[mm] \bruch{\ln(1+x) - \ln(1)}{x - 0} [/mm]
Das ist also ein Differenzenquotient, und zwar von der Funktion ln(x) an der Stelle 1

[mm] ln'(x_0) [/mm] = [mm] \bruch{\ln(1+x) - \ln(1)}{x - 0} [/mm]
[mm] \frac{1}{x_0} =\bruch{\ln(1+x) - \ln(1)}{x - 0} [/mm]

1/(1+x) < [mm] 1/x_0 [/mm] < 1

1 < [mm] x_0 [/mm]

[mm] x_0< [/mm] 1+ x

HAb ich was falsch gemacht?

Bezug
                                        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Di 24.01.2012
Autor: Marcel

Hallo,

> danke ;)
>  So mal weiter..
>  
> [mm]\bruch{\ln(1+x) - \ln(1)}{x - 0}[/mm]
>  Das ist also ein
> Differenzenquotient, und zwar von der Funktion ln(x) an der
> Stelle 1

nein! Sondern von der Funktion (wir schreiben hier besser mal nicht [mm] $x\,$ [/mm] als Funktionsvariable) $r [mm] \mapsto \ln(1+r)\,,$ [/mm] und der Differenzenquotient wird bzgl. den Stellen [mm] $0\,$ [/mm] und $x$ (bzw., wie man auch sagt: im Intervall $[0,x]$) gebildet. Das ist kein Differentialquotient!!  

Und:
Schreib' bitte (mehr!) Text dazu und benutze passende Symbole, wenn angebracht. Ansonsten wirst Du selber irgendwann nicht mehr (schnell) verstehen, was Du da gemacht hast. Also:
  
Es gibt ein $0 < [mm] x_0 [/mm] < x$ so, dass

> [mm]ln'(x_0)[/mm] = [mm]\bruch{\ln(1+x) - \ln(1)}{x - 0}[/mm]


>  [mm]\red{\frac{1}{x_0}} =\bruch{\ln(1+x) - \ln(1)}{x - 0}[/mm]

  
Vorsicht!!

Hier gehört (siehe oben, denn ein wenig besser formuliert: Wir betrachten $r [mm] \mapsto \ln(1+r)$ [/mm] auf dem Intervall $[0,x]$ mit beliebigem, aber festem $x > 0$)
[mm] $$\gdw \frac{1}{1+x_0}=\frac{\ln(1+x)-\ln(1)}{x-0}$$ [/mm]
hin!

> 1/(1+x) < [mm]1/x_0[/mm] < 1
>  
> 1 < [mm]x_0[/mm]
>
> [mm]x_0<[/mm] 1+ x
>  
> HAb ich was falsch gemacht?

Du solltest beachten, dass wir $0 < [mm] x_0 [/mm] <x$ haben.

Du weißt nun:
[mm] $$1/(1+x_0)=\frac{\ln(1+x)}{x}\,.$$ [/mm]

Nun kannst Du [mm] $1/(1+x_0)$ [/mm] nach unten abschätzen:
[mm] $$1/(1+x_0) [/mm] > [mm] 1/(1+x)\,,$$ [/mm]
weil ja $0 [mm] \blue{ < x_0 < x}$ [/mm] gilt, und auch nach oben
[mm] $$1/(1+x_0) [/mm] < [mm] 1/(1+0)\,,$$ [/mm]
weil ja [mm] $\blue{0 < x_0} [/mm] < x$ gilt.

Gruß,
Marcel

Bezug
                                                
Bezug
Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 Di 24.01.2012
Autor: Lu-

Also ist es nun der ganze spaß schon bewiesen?
Ich hab mich versucht an:
[mm] \wurzel{1+x} [/mm] < 1 + x/2

Überlegung:
[mm] (\wurzel{1+x})' [/mm] = [mm] \frac{1}{2*\wurzel{1+x}} [/mm]

Umformung:
[mm] \wurzel{1+x} [/mm] - 1 < x/2
[mm] \frac{\wurzel{1+x} - 1}{x} [/mm] < 1/2

Funktion:
r-> [mm] \wurzel{1+r} [/mm]

Mittelwertsatz
[mm] \frac{f(x) - f(0)}{x-0} [/mm] =  [mm] \frac{\wurzel{1+x} - \wurzel{1-0}}{x} [/mm] = [mm] \frac{\wurzel{1+x}-1}{x} [/mm] = [mm] (\wurzel{1+x_0})' [/mm]
<=>
[mm] \frac{\wurzel{1+x}-1}{x} [/mm] = [mm] \frac{1}{2*\wurzel{1+x_0}} [/mm]
dabei ist x < [mm] x_0 [/mm] < 0


[mm] \frac{\wurzel{1+x}-1}{x} [/mm] = [mm] \frac{1}{2* \wurzel{1+x_0}} [/mm] <  [mm] \frac{1}{2*\wurzel{1+x}} [/mm]  < 1/2



Bezug
                                                        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 Di 24.01.2012
Autor: Gonozal_IX

Hiho,

wenn man Schusselfehler macht, kann das auch nix werden :-)
Ansonsten siehts aber auch schon gut aus.

>  Ich hab mich versucht an:
>  [mm]\wurzel{1+x}[/mm] < 1 + x/2

>  [mm]\frac{\wurzel{1+x} - 1}{x}[/mm] < 1/2

Nutze doch auch für "normale" Brüche bitte die Bruchfunktion des Editors.
Da steht also:

z.z. [mm]\frac{\wurzel{1+x} - 1}{x} < \frac{1}{2}[/mm]

Das ist auch richtig.


> [mm]\frac{\wurzel{1+x}-1}{x}[/mm] = [mm]\frac{1}{2* \wurzel{1+x_0}}[/mm] <  
> [mm]\frac{1}{2*\wurzel{1+x}}[/mm]  < 1/2

Die erste Abschätzung ist Blödsinn, die zweite wieder richtig.
Es gilt doch [mm] $x_0 [/mm] < x$ und damit

[mm]\frac{1}{2* \wurzel{1+x_0}} > \frac{1}{2*\wurzel{1+x}}[/mm] !

Lass die Abschätzung weg und alles ist gut.
Schätze [mm] x_0 [/mm] durch 0 ab und dann steht doch die [mm] \bruch{1}{2} [/mm] da!

MFG,
Gono.

Bezug
                                                                
Bezug
Mittelwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:58 Di 24.01.2012
Autor: Lu-

Jetzt habs verstanden ;) Vielen Dank euch!!!!
Um 1 Uhr seien mir Schusselfehler erlaubt ;)

Gute Nacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]