matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMittelwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Mittelwertsatz
Mittelwertsatz < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz: Aussage
Status: (Frage) beantwortet Status 
Datum: 17:27 Di 08.09.2009
Autor: Achtzig

Aufgabe
Mittelwertsatz: Sei U [mm] \subset R^n [/mm] ...... usw
dann gilt:
f(x+ [mm] \gamma) [/mm] = f(x) + [mm] (\int_{1}^{0} Df(x+\gamma [/mm] *t) dt) * [mm] \gamma [/mm]

Hallo! kann mir bitte jemand mal diesen Mittelwertsatz im mehrdimensionalen erklären? am besten auch irgendwie anschaulich!!!!

Danke schonmal
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Di 08.09.2009
Autor: Al-Chwarizmi


> Mittelwertsatz: Sei U [mm]\subset R^n[/mm] ...... usw
> dann gilt:

>      $f(x+h)= f(x) + [mm] \left(\integral_{0}^{1} Df(x+h*t) dt\right) [/mm] *h$

> Hallo! kann mir bitte jemand mal diesen Mittelwertsatz
> im mehrdimensionalen erklären? am besten auch irgendwie
> anschaulich!!!!


Hallo 80,

die Integration muss natürlich von 0 bis 1 gehen,
nicht umgekehrt. Ich habe das oben korrigiert.
Zudem schreibe ich der Einfachheit halber lieber h
statt [mm] \gamma. [/mm]

Bei f handelt es sich ja um eine Funktion mit einer
reellen Variablen [mm] x\in\IR^n [/mm] und Werten in [mm] \IR^m [/mm] .
Zu den Voraussetzungen gehört natürlich, dass alle
m Komponentenfunktionen stetig differenzierbar sein
sollen (damit die Ableitung von f und die Integration
von Df sicher gewährleistet ist).

Zum Beweis denkt man sich eine geradlinige Bahn
(Strecke) vom Punkt x zum Punkt x+h. Dabei wird
auch noch vorausgesetzt, dass diese gesamte Ver-
bindungsstrecke zur Umgebung U und damit zum
Definitionsbereich von f gehört. Die Bahn wird nun
linear parametrisiert mit einem reellen Parameter,
der von t=0 bis t=1 laufen soll. Also ist der zum
Parameterwert t [mm] (t\in[0....1] [/mm] gehörige Punkt [mm] P(t)\in\IR^n [/mm]

       $\ P(t)=x+t*h$

Für den Beweis im Einzelnen wendet man dann den
"gewöhnlichen" Mittelwertsatz für alle Komponenten
einzeln an. Einen ausführlichen Beweis findest du da:
[]Mittelwertsätze  (Satz 16KL)


Gruß und schönen Abend !

Al-Chwarizmi




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]