matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperMinoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Minoren
Minoren < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minoren: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 16:02 Do 10.07.2014
Autor: Differential

Aufgabe
Sei $R$ ein kommutativer Ring und [mm] $A\ne [/mm] 0$ eine [mm] $n\times [/mm] n$ Matrix über $R$ mit [mm] $\det [/mm] A=0$. Dann existiert ein [mm] $x\in\ker A\setminus\left\{0\right\}$ [/mm] sodass die Komponenten von $x$ bis auf Vorzeichen Minoren von $A$ sind.



Mit Hilfe einer Verallgemeinerung der Carmer'schen Regel erhält man leicht [mm] $$\det A\cdot x_i=\det A_i$$ [/mm] wobei [mm] $A_i$ [/mm] durch Ersetzung der $i$-ten Spalte durch den Nullvektor aus $A$ hervorgeht.

Das sieht schon ziemlich gut aus. Doch irgendwie komme ich hier nicht weiter? Habt ihr einen Tipp für mich?

Gruß
Differential

        
Bezug
Minoren: Wieder hergestellt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Do 10.07.2014
Autor: Diophant

Hallo Differential,

deiner Bitte um Löschung bin ich nicht nachgekommen. Ich habe im Gegenteil deine Frage wiederhergestellt und als Frage für Interessierte markiert.

Ich würde dich generell bitten, einmal gestellte Fragen nicht zu löschen, dies wird hier anders gehandhabt. Meine Bitte hat den Hintergrund, dass du dies offensichtlich schon öfter so gehandhabt hast.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]