Minkowskische Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:29 Mi 22.03.2017 | Autor: | X3nion |
Guten Tag zusammen!
Ich verstehe den Beweis zum Satz der Minkowskischen Ungleichung aus dem Forster nicht so ganz.
Der Satz lautet wie folgt: Sei p [mm] \in [/mm] [1, [mm] \infty[. [/mm] Dann gilt für alle x,y [mm] \in \IC^{n}
[/mm]
[mm] ||x+y||_{p} \le ||x||_{p} [/mm] + [mm] ||y||_{q}.
[/mm]
Beweis: Für p = 1 folgt der Satz direkt aus der Dreiecksungleichung für komplexe Zahlen. Sei nun p > 1 und q definiert durch [mm] \frac{1}{p} [/mm] + [mm] \frac{1}{q} [/mm] = 1. Es sei z [mm] \in \IC^{n} [/mm] der Vektor mit den Komponenten
[mm] z_{v}:= |x_{v} [/mm] + [mm] y_{v}|^{p-1}, [/mm] v = 1,...,n.
Dann ist [mm] z_{v}^{q} [/mm] = [mm] |x_{v} [/mm] + [mm] y_{v}|^{q(p-1)} [/mm] = [mm] |x_v [/mm] + [mm] y_v|^{p}, [/mm] also
[mm] ||z||_{q} [/mm] = [mm] ||x+y||_{q}^{\frac{p}{q}}
[/mm]
Nach der Hölderschen Ungleichung gilt
[mm] \summe_{v} |x_v [/mm] + [mm] y_v|*|z_v| \le \summe_{v} |x_v z_v| [/mm] + [mm] \summe_{v} |y_v z_v| \le (||x||_p [/mm] + [mm] ||y||_p) ||z||_q,
[/mm]
also nach Definition von z
[mm] ||x+y||_{p}^{p} \le (||x||_p [/mm] + [mm] ||x||_p) ||x+y||_{p}^{\frac{p}{q}}
[/mm]
Da p - [mm] \frac{p}{q} [/mm] = 1, folgt daraus die Behauptung.
---
- Nun ist [mm] z_{v}^{q} [/mm] = [mm] |x_{v} [/mm] + [mm] y_{v}|^{q(p-1)} [/mm] = [mm] |x_v [/mm] + [mm] y_v|^{p} [/mm] wegen p = qp - q (was aus [mm] \frac{1}{p} [/mm] + [mm] \frac{1}{q} [/mm] = 1 folgt)
- Ferner ist [mm] ||z||_{q} [/mm] = [mm] ||x+y||_{q}^{\frac{p}{q}} [/mm] wegen
[mm] ||z||_{q} [/mm] = [mm] (\summe_{v=1}^{n} |z_{v}^{q}|)^{\frac{1}{q}} [/mm] = [mm] (\summe_{v=1}^{n} |x_v [/mm] + [mm] y_v|^{p})^{\frac{1}{q}} [/mm] =
[mm] [(\summe_{v=1}^{n}|x_v [/mm] + [mm] y_v|^{p})^{\frac{1}{p}}]^{\frac{p}{q}} [/mm] = [mm] ||x+y||_{p}^{\frac{p}{q}}.
[/mm]
- Was mir auch klar ist, ist dass [mm] \summe_{v} |x_v z_v| [/mm] + [mm] \summe_{v} |y_v z_v| \le (||x||_p [/mm] + [mm] ||y||_p) ||z||_q [/mm]
wegen der Hölder'schen Ungleichung: [mm] \summe_{v} |x_v z_v| \le ||x||_p ||z||_q [/mm] und [mm] \summe_{v} |y_v z_v| \le ||y||_p ||z||_q
[/mm]
=>
- Nun verstehe ich zum einen nicht, wieso [mm] \summe_{v} |x_v [/mm] + [mm] y_v|*|z_v| \le \summe_{v} |x_v z_v| [/mm] + [mm] \summe_{v} |y_v z_v| [/mm] ist, also welcher Satz für Ungleichungen hier benutzt wurde.
- Zum anderen verstehe ich nicht, wieso wegen p - [mm] \frac{p}{q} [/mm] = 1 schlussendlich die Behauptung folgt.
Ich wäre für eure Tipps wie immer sehr dankbar!
Viele Grüße,
X3nion
|
|
|
|
Hiho,
> =>
> - Nun verstehe ich zum einen nicht, wieso [mm]\summe_{v} |x_v[/mm] +
> [mm]y_v|*|z_v| \le \summe_{v} |x_v z_v|[/mm] + [mm]\summe_{v} |y_v z_v|[/mm] ist, also welcher Satz für Ungleichungen hier benutzt
> wurde.
amüsant: Das offensichtlichste von allen, verstehst du nicht. Du wirst dir gleich mit der Hand gegen den Kopf klatschen.
Es ist doch mit der simplen Dreiecksungleichung: [mm] $|x_v [/mm] + [mm] y_v|\cdot |z_v| [/mm] = [mm] |(x_v [/mm] + [mm] y_v)z_v| [/mm] = [mm] |x_vz_v [/mm] + [mm] y_vz_v| \le |x_vz_v| [/mm] + [mm] |y_vz_v|$
[/mm]
> - Zum anderen verstehe ich nicht, wieso wegen p -
> [mm]\frac{p}{q}[/mm] = 1 schlussendlich die Behauptung folgt.
Na weil deswegen [mm] $\frac{p}{q} [/mm] = p-1$ ist und wenn du das in Exponenten auf der rechten Seite einsetzt und dann auf beiden Seiten durch $ [mm] ||x+y||_{p}^{p-1}$ [/mm] dividierst, das Gewünschte da steht.
Gruß,
Gono
|
|
|
|