matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikMinimierungsproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Numerik" - Minimierungsproblem
Minimierungsproblem < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimierungsproblem: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:41 Do 10.10.2013
Autor: Katja444

Aufgabe
Finde a sodass p = z + ad die Funktion m(p) minimiert und |p|=radius gilt.
Hierbei ist m(p)=f+g^Tp + 0.5 p^TBp s.t. |p|<= radius.
g ist der Gradient und B die Hessematrix.

Das oben beschriebene Problem ist ein Unterproblem des CG-Steilhaug Algorithmus (http://sentientdesigns.net/math/mathbooks/Number%20theory/Numerical%20Optimization%20-%20J.%20Nocedal,%20S.%20Wright.pdf, S. 75). Es ist glaube ich sehr einfach, aber ich steh irgendwie auf dem Schlauch :(

Danke im Voraus!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://forum.openopt.org/viewtopic.php?pid=2173#p2173

        
Bezug
Minimierungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:06 Do 10.10.2013
Autor: fred97


> Finde a sodass p = z + ad die Funktion m(p) minimiert und
> |p|=radius gilt.
>  Hierbei ist m(p)=f+g^Tp + 0.5 p^TBp s.t. |p|<= radius.
>  g ist der Gradient und B die Hessematrix.
>  Das oben beschriebene Problem ist ein Unterproblem des
> CG-Steilhaug Algorithmus
> (http://sentientdesigns.net/math/mathbooks/Number%20theory/Numerical%20Optimization%20-%20J.%20Nocedal,%20S.%20Wright.pdf,
> S. 75). Es ist glaube ich sehr einfach, aber ich steh
> irgendwie auf dem Schlauch :(
>  
> Danke im Voraus!
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  http://forum.openopt.org/viewtopic.php?pid=2173#p2173


Fragen:

1. Was ist f ?

2. Ist g der Gradient von f (an einer Stelle [mm] x_0 \in \IR^n) [/mm] ?

3. Ist B die Hessematrix von f (an einer Stelle [mm] x_0 \in \IR^n) [/mm] ?

4. Lautet die Funktion m vielleicht so:

     [mm] $m(p)=f(x_0)+g(x_0)^Tp [/mm] + 0.5 [mm] p^TB(x_0)p [/mm] $ ?

5. Was sind  die Größen z, a und d  in p = z + ad ?


FRED

Bezug
                
Bezug
Minimierungsproblem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:25 Do 10.10.2013
Autor: Katja444

Tut mir leid für die undeutliche Aufgabenstellung.

Zu 1: f: [mm] \IR^n \to \IR [/mm]
Zu 2 bis 4: ja
Zu 5: z [mm] \in \IR^n, [/mm] d [mm] \in \IR^n, [/mm] a Skalar


Bezug
                        
Bezug
Minimierungsproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 17.10.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Minimierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 Di 15.10.2013
Autor: Katja444

Kann mir keiner einen Tipp geben?

Bezug
                        
Bezug
Minimierungsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Di 15.10.2013
Autor: tobit09

Hallo Katja444 und herzlich [willkommenmr]!


Dass dir bisher noch niemand geantwortet hat, liegt vermutlich daran, dass du deine ergänzenden Informationen als Mitteilung statt als Frage gepostet hattest. Somit erschien dieser Thread nicht in der Liste der offenen Fragen.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]