matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesMinimalpolynom ausrechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Minimalpolynom ausrechnen
Minimalpolynom ausrechnen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom ausrechnen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:54 Mo 21.05.2012
Autor: Studi91

Aufgabe
Berechne das Minimalpolynom von A := [mm] \pmat{ 4 & -2 & 2 \\ -5 & 7 & -5 \\ -6 & 7 & -4 }, [/mm] wobei A [mm] \in M_{3x3}(\IC). [/mm]

Hallo,
ich habe zu dieser Matrix das char. Polynom ausgerechnet:
[mm] p_{A}(x) [/mm] = [mm] (-x+2)(x^2-5x+11) [/mm]
Ist das jetzt schon das Minimalpolynom, da bei beiden Termen der Exponent 1 ist, das Polynom also schon minimalen Grad hat?

Grüße

        
Bezug
Minimalpolynom ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Mo 21.05.2012
Autor: Schadowmaster

moin,

> Berechne das Minimalpolynom von A := [mm]\pmat{ 4 & -2 & 2 \\ -5 & 7 & -5 \\ -6 & 7 & -4 },[/mm]
> wobei A [mm]\in M_{3x3}(\IC).[/mm]
>  Hallo,
>  ich habe zu dieser Matrix das char. Polynom ausgerechnet:
>  [mm]p_{A}(x)[/mm] = [mm](-x+2)(x^2-5x+11)[/mm]
>  Ist das jetzt schon das Minimalpolynom, da bei beiden
> Termen der Exponent 1 ist, das Polynom also schon minimalen
> Grad hat?

Den Exponenten des zweiten Terms würde ich eher als 2 bezeichnen...
Darüber hinaus bist du über [mm] $\IC$, [/mm] also kannst du den zweiten in zwei lineare Faktoren zerlegen.
Wenn du das gemacht hast dann lässt sich auch die Frage klären, ob dies das Minimalpolynom ist oder nicht (wie?).
Überdies hat dieses Polynom Grad 3, und daran ändert auch keine Faktorisierung etwas, von daher ist es etwas unschön hier von einem minimalen Grad zu sprechen.

>
> Grüße

lg

Schadow


Bezug
                
Bezug
Minimalpolynom ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mo 21.05.2012
Autor: Studi91

Stimmt, an eine feinere Zerlegung habe ich nicht gedacht.
Dann ist das char. Polynom:
[mm] p_{A}(x):=(-x+2)(x [/mm] - [mm] \bruch{1}{2}(5-i*\wurzel{19}))(x [/mm] + [mm] \bruch{1}{2}(5-i*\wurzel{19})) [/mm]
Und dies ist dann auch das Minimalpolynom, da alle Nullstellen von Vielfachheit 1 sind.
Begründung so richtig?

Vielen Dank

Bezug
                        
Bezug
Minimalpolynom ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Mo 21.05.2012
Autor: Schadowmaster


> Stimmt, an eine feinere Zerlegung habe ich nicht gedacht.
>  Dann ist das char. Polynom:
>  [mm]p_{A}(x):=(-x+2)(x[/mm] - [mm]\bruch{1}{2}(5-i*\wurzel{19}))(x[/mm] +
> [mm]\bruch{1}{2}(5-i*\wurzel{19}))[/mm]
>  Und dies ist dann auch das Minimalpolynom, da alle
> Nullstellen von Vielfachheit 1 sind.
>  Begründung so richtig?


Jo, jetzt sieht das gut aus.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]