matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMinimalpolynom & Jordan-NF
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Minimalpolynom & Jordan-NF
Minimalpolynom & Jordan-NF < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom & Jordan-NF: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:51 So 20.06.2010
Autor: peeetaaa

Aufgabe
Man bestimme jeweils das char. Polynom und das Minimalpolynom, sowie die Jordan-Normalform der Folgenden Matrizen in [mm] \IC^{4x4} [/mm] , zusammen mit geeigneten Transformationsmatrizen.

F= [mm] \pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 } [/mm]

Hallo zusammen,

da ich solche aufgaben noch nicht oft gemacht habe hoffe ich, dass mir jemand ein bisschen dabei helfen kann!

Also wollte jetzt zu der Matrix F zuerst das char. Polynom rauskriegen. Das ist ja [mm] (0-\lambda)^4 [/mm] = [mm] (-\lambda)^4 [/mm] = [mm] \lambda^4 [/mm] oder?
Dann das Minimalpolynom (damit hab ich besonders meine Schwierigkeiten)
hätte gedacht, dass das [mm] -\lambda [/mm] bzw nur [mm] \lambda [/mm] ist weil sich die MAtrix ja nicht verändert!
Dann zur JNF. Hier weiß ich ja schon durchs char. Polynom, dass der einzige Eigenwert [mm] \lambda=0 [/mm] ist, mit der algebr. Vielfachheit 4. Sodass ich weiß, dass die Länge der Jordanblocks zu diesem EW = 4 ist
da kein anderer EW vorhanden ist müsste die JNF ja quasi so aussehen:
F= [mm] \pmat{ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 } [/mm]

Jetzt muss ja noch die Transformationsmatrizen bilden aber da bin ich ein bisschen ratlos:
Hab jetzt folgendes versucht:

(F-0*En) = F= [mm] \pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 } [/mm]
[mm] (F-0*En)^2 [/mm] =F= [mm] \pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 } [/mm]
usw.
Dann wollte ich dazu Basisvektoren rausbekommen aber es gilt doch eigentich
Kern(F-0*En)= [mm] \IR^4 [/mm] und das auch für [mm] Kern(F-0*En)^2 [/mm] usw. oder?
Naja und deshalb nicht wie ich hier weitermachen soll!
Kann mir da vllt jemand helfen?

Gruß,
peeetaaa

        
Bezug
Minimalpolynom & Jordan-NF: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 So 20.06.2010
Autor: wieschoo

Wo hast du denn diese Matrix aufgetrieben? In deinem Beispiel ist es sinnlos danach zu fragen, denn der Nullmatrix ist es wurscht zu welcher Basis man sie aufstellt. Es ist und bleibt immer die Nullmatrix!

Aber vllt. ein paar Gedanken zu deiner Frage allgemein. Das charakteristische Polynom hast du richtig herausgefunden.
Das Minimalpolynom kann man ablesen, wenn man die Matrix solange potenziert, bis eine dieser Potenzen linear abhängig zu vorherigen Potenzen ist. Wenn z.B.
[mm] $A^3=2A^2-A+3\cdot 1_n$ [/mm] gilt. Dann ist dein Minimalpolynom [mm] $\mu_A=x^3-2x^2+x-3$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]