matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraMinimalpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Minimalpolynom
Minimalpolynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Fr 27.11.2009
Autor: kuemmelsche

Hallo zusammen,

gibt es denn einen formalen Weg, wie man zu einem bestimmten Element $b$ ein Minimalpolynom über einen bestimmten Körper $K$ bestimmt?

Wenn ja, wie macht man das?

Ich hab es bis jetzt nur einmal gesehen, wie das gehen kann. Und da wurde mit Hilfe des Gradsatzes eine Basis [mm] $\{1=b^0, b^1, b^2, b^3 \} [/mm] in $K(b)$ (K adjungiert b) bestimmt, und dann die Gleichung [mm] $0=a_0*b_0+a^1*b^1+a^2*b^2+a_3*b^3+b^4$ [/mm] mittels Koeffizientenvgl. gelöst. Das dabei entstehende Polynom soll dann Minimalpolynom sein.

Gibt es da noch einen schöneren Weg? Oder ist der schon einfach genug?

Vielen Dank im Voraus!

lg Kai

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Fr 27.11.2009
Autor: felixf

Hallo!

> Hallo zusammen,
>  
> gibt es denn einen formalen Weg, wie man zu einem
> bestimmten Element [mm]b[/mm] ein Minimalpolynom über einen
> bestimmten Körper [mm]K[/mm] bestimmt?

Irgendwie musst du ja einen Oberkoerper $L$ von $K$ haben, in dem $b$ liegt. Ist der von der Form $L = K(b)$?

> Wenn ja, wie macht man das?
>  
> Ich hab es bis jetzt nur einmal gesehen, wie das gehen
> kann. Und da wurde mit Hilfe des Gradsatzes eine Basis
> [mm]$\{1=b^0, b^1, b^2, b^3 \}[/mm] in $K(b)$ (K adjungiert b)
> bestimmt, und dann die Gleichung
> [mm]$0=a_0*b_0+a^1*b^1+a^2*b^2+a_3*b^3+b^4$[/mm] mittels
> Koeffizientenvgl. gelöst. Das dabei entstehende Polynom
> soll dann Minimalpolynom sein.

Koeffizientenvergleich nicht, aber du bekommst ein lineares Gleichungssystem mit linearen Koeffizienten.

Du kannst alternativ auch $L = K(b)$ als $K$-Vektorraum auffassen und $a$ als Endomorphismus: naemlich Multiplikation mit $a$. Diesen kannst du bzgl. der Basis $1, b, [mm] b^2, \dots, b^3$ [/mm] als Matrix darstellen und davon das charakteristische Polynom berechnen. Dieses ist eine Potenz des Minimalpolynoms, und das Minimalpolynom der Matrix ist gleich dem Minimalpolynom von $a$ ueber $K$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]