matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperMinimalpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Minimalpolynom
Minimalpolynom < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: existenz
Status: (Frage) beantwortet Status 
Datum: 15:29 Fr 09.10.2009
Autor: jumape

Aufgabe
Warum existiert überhaupt ein Minimalpolynom? (für algebraische elemente in L-K; wobei L/K Körpererweiterung)

Ich habe gar keine ahnung. Kann man das damit beweisen, dass der Kern des Einsetzungshomomorphismus nicht leer ist da das element algebraisch ist und da es ein Hauptidealring ist, ist es von einem element erzeugt?
woher weiß ich dann dass es das minimale Polynom ist? (weilmein eines mit kleinerem grad kaum durch eines mit größerem Grad erzeugen kann?)

Was muss ich eigentlich alles zeigen, damit ich bewiesen habe, dass es ein Minimalpolynom gibt?

Es wäre nett, wenn mir jemand helfen könnte.

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Fr 09.10.2009
Autor: felixf

Hallo!

> Warum existiert überhaupt ein Minimalpolynom? (für
> algebraische elemente in L-K; wobei L/K
> Körpererweiterung)
>
>  Ich habe gar keine ahnung. Kann man das damit beweisen,
> dass der Kern des Einsetzungshomomorphismus nicht leer ist
> da das element algebraisch ist und da es ein Hauptidealring
> ist, ist es von einem element erzeugt?

Ja.

>  woher weiß ich dann dass es das minimale Polynom ist?
> (weilmein eines mit kleinerem grad kaum durch eines mit
> größerem Grad erzeugen kann?)

Das liegt daran, dass es nicht nur ein Hauptidealring ist, sondern ein euklidischer Ring: bei solchen wird ein Ideal von einem Element mit minimalen Grad erzeugt.

> Was muss ich eigentlich alles zeigen, damit ich bewiesen
> habe, dass es ein Minimalpolynom gibt?

Mach es doch wie beim Minimalpolynom bei Matrizen (wie es da geht sollte dir bekannt sein): Nimm zwei Polynome mit minimalen Grad, und zeige dass sie bis auf einen skalaren Faktor gleich sind.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]