matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesMinimalpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Minimalpolynom
Minimalpolynom < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 So 12.07.2009
Autor: T_sleeper

Aufgabe
Sei A eine [mm] n\times [/mm] n-Matrix. Zeigen Sie: Wenn das Minimalpolynom von A irreduzibel mit Grad t ist, so ist n ein ganzzahliges Vielfaches von t.  

Hallo,

schon wieder das geliebte Minimalpolynom.
Das Minimalpolynom ist Teiler des charakteristischen, d.h. sei [mm] \mu_A [/mm] das Minimalpolynom und [mm] \chi_A [/mm] das charakteristische, dann gibt es Polynom [mm] \phi, [/mm] mit [mm] \chi_A=\phi \mu_A. [/mm]

Der Grad von [mm] \chi_A [/mm] könnte  n sein. Ich hoffe das bringt mich näher ans Ziel...

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 So 12.07.2009
Autor: felixf

Hallo!

> Sei A eine [mm]n\times[/mm] n-Matrix. Zeigen Sie: Wenn das
> Minimalpolynom von A irreduzibel mit Grad t ist, so ist n
> ein ganzzahliges Vielfaches von t.
>  
> schon wieder das geliebte Minimalpolynom.
>  Das Minimalpolynom ist Teiler des charakteristischen, d.h.
> sei [mm]\mu_A[/mm] das Minimalpolynom und [mm]\chi_A[/mm] das
> charakteristische, dann gibt es Polynom [mm]\phi,[/mm] mit
> [mm]\chi_A=\phi \mu_A.[/mm]

Ja. Hier brauchst du aber noch mehr. Wenn etwa $x - 1$ das Minimalpolynom ist, kann das charakteristische Polynom dann $(x - 1) (x - 2)$ sein? Wenn nein, warum nicht?

> Der Grad von [mm]\chi_A[/mm] könnte  n sein. Ich hoffe das bringt
> mich näher ans Ziel...

Nein, bringt es dich nicht, schliesslich ist [mm] $\deg \chi_A [/mm] = n$ ein trivialer Spezialfall. Der interessante Fall ist [mm] $\deg \chi_A [/mm] < n$, darueber sagt der Spezialfall gar nichts aus.

LG Felix


Bezug
                
Bezug
Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:04 So 12.07.2009
Autor: T_sleeper


> Hallo!
>  
> > Sei A eine [mm]n\times[/mm] n-Matrix. Zeigen Sie: Wenn das
> > Minimalpolynom von A irreduzibel mit Grad t ist, so ist n
> > ein ganzzahliges Vielfaches von t.
> >  

> > schon wieder das geliebte Minimalpolynom.
>  >  Das Minimalpolynom ist Teiler des charakteristischen,
> d.h.
> > sei [mm]\mu_A[/mm] das Minimalpolynom und [mm]\chi_A[/mm] das
> > charakteristische, dann gibt es Polynom [mm]\phi,[/mm] mit
> > [mm]\chi_A=\phi \mu_A.[/mm]
>  
> Ja. Hier brauchst du aber noch mehr. Wenn etwa [mm]x - 1[/mm] das
> Minimalpolynom ist, kann das charakteristische Polynom dann
> [mm](x - 1) (x - 2)[/mm] sein? Wenn nein, warum nicht?
>  

Nee, weil das Minimalpolynom alle Nullstellen des charakteristischen Polynoms enthält. Die Frage ist, wie hängt das alle mit n zusammen?

Bezug
                        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 So 12.07.2009
Autor: felixf

Hallo!

> > > Sei A eine [mm]n\times[/mm] n-Matrix. Zeigen Sie: Wenn das
> > > Minimalpolynom von A irreduzibel mit Grad t ist, so ist n
> > > ein ganzzahliges Vielfaches von t.
> > >  

> > > schon wieder das geliebte Minimalpolynom.
>  >  >  Das Minimalpolynom ist Teiler des
> charakteristischen,
> > d.h.
> > > sei [mm]\mu_A[/mm] das Minimalpolynom und [mm]\chi_A[/mm] das
> > > charakteristische, dann gibt es Polynom [mm]\phi,[/mm] mit
> > > [mm]\chi_A=\phi \mu_A.[/mm]
>  >  
> > Ja. Hier brauchst du aber noch mehr. Wenn etwa [mm]x - 1[/mm] das
> > Minimalpolynom ist, kann das charakteristische Polynom dann
> > [mm](x - 1) (x - 2)[/mm] sein? Wenn nein, warum nicht?
>  >  
> Nee, weil das Minimalpolynom alle Nullstellen des
> charakteristischen Polynoms enthält. Die Frage ist, wie
> hängt das alle mit n zusammen?

Sei $f$ das irreduzible Minimalpolynom von $A$.

Kann das charakteristische Polynom z.B. die Form $f [mm] \cdot [/mm] g$ haben, wobei $g$ ein von $f$ verschiedenes irreduzibles Polynom ist?

LG Felix


Bezug
                                
Bezug
Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 So 12.07.2009
Autor: T_sleeper


> Kann das charakteristische Polynom z.B. die Form [mm]f \cdot g[/mm]
> haben, wobei [mm]g[/mm] ein von [mm]f[/mm] verschiedenes irreduzibles Polynom
> ist?
>  
> LG Felix
>  

Nein von f verschieden kann es nicht sein, es kann höchstens das Minimalpolynom [mm] f^x [/mm] sein.

Bezug
                                        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 So 12.07.2009
Autor: felixf

Hallo!

> > Kann das charakteristische Polynom z.B. die Form [mm]f \cdot g[/mm]
> > haben, wobei [mm]g[/mm] ein von [mm]f[/mm] verschiedenes irreduzibles Polynom
> > ist?
>  >  
> > LG Felix
>  >  
>
> Nein von f verschieden kann es nicht sein, es kann
> höchstens das Minimalpolynom [mm]f^x[/mm] sein.

Genau. Es gilt also [mm] $\chi_A [/mm] = [mm] f^m$ [/mm] fuer ein $m [mm] \in \IN$. [/mm] Und es ist $n = [mm] \deg \chi_A$. [/mm] Also...?

LG Felix


Bezug
                                                
Bezug
Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 So 12.07.2009
Autor: T_sleeper


> Hallo!
>  
> > > Kann das charakteristische Polynom z.B. die Form [mm]f \cdot g[/mm]
> > > haben, wobei [mm]g[/mm] ein von [mm]f[/mm] verschiedenes irreduzibles Polynom
> > > ist?
>  >  >  
> > > LG Felix
>  >  >  
> >
> > Nein von f verschieden kann es nicht sein, es kann
> > höchstens das Minimalpolynom [mm]f^x[/mm] sein.
>
> Genau. Es gilt also [mm]\chi_A = f^m[/mm] fuer ein [mm]m \in \IN[/mm]. Und es
> ist [mm]n = \deg \chi_A[/mm]. Also...?
>  
> LG Felix

Dann ist n=mt und es folgt Beh.

>  


Bezug
                                                        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 So 12.07.2009
Autor: felixf

Hallo!

> > Genau. Es gilt also [mm]\chi_A = f^m[/mm] fuer ein [mm]m \in \IN[/mm]. Und es
> > ist [mm]n = \deg \chi_A[/mm]. Also...?
>  
> Dann ist n=mt und es folgt Beh.

Wenn $t = [mm] \deg [/mm] f$ ist, ja.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]