matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMinimalpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Minimalpolynom
Minimalpolynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Bestimmung des Minimalpolynoms
Status: (Frage) beantwortet Status 
Datum: 11:29 Do 24.04.2008
Autor: JulianTa

Aufgabe
Sei A [mm] \in Mat(3x3,\IR) [/mm]
A= [mm] \pmat{ 1 & 1 & 0 \\ 0&1&0 \\ 0&0&1 }, A^2= \pmat{ 1&2&0 \\ 0&1&0 \\ 0&0&1}= [/mm] 2A - [mm] 1*E_3 [/mm]
Bestimme das Minimalpolynom!

Hallo! in der Vorlesung hatten wir dieses Beispiel. Ich verstehe leider folgende  Lösung überhaupt nicht, und würde gern wissen, wie ich das Minimalpolynom bestimme. Leider können mir die Kommilitonen auch nicht weiterhelfen, mit denen ich zu tun habe.
Also die Lösung des Profs war:

"Weil A kein Vielfaches der Einheitsmatrix ist, gibt es kein Polynom vom Grad 1, welches A als Nullstelle hat. Also ist q= [mm] t^2 [/mm] - 2t + 1 das Minimalpolynom."

Vielen Dank


        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Do 24.04.2008
Autor: angela.h.b.


> Sei A [mm]\in Mat(3x3,\IR)[/mm]
>  A= [mm]\pmat{ 1 & 1 & 0 \\ 0&1&0 \\ 0&0&1 }, A^2= \pmat{ 1&2&0 \\ 0&1&0 \\ 0&0&1}=[/mm]
> 2A - [mm]1*E_3[/mm]
>  Bestimme das Minimalpolynom!
>  Hallo! in der Vorlesung hatten wir dieses Beispiel. Ich
> verstehe leider folgende  Lösung überhaupt nicht, und würde
> gern wissen, wie ich das Minimalpolynom bestimme. Leider
> können mir die Kommilitonen auch nicht weiterhelfen, mit
> denen ich zu tun habe.
>  Also die Lösung des Profs war:
>  
> "Weil A kein Vielfaches der Einheitsmatrix ist, gibt es
> kein Polynom vom Grad 1, welches A als Nullstelle hat. Also
> ist q= [mm]t^2[/mm] - 2t + 1 das Minimalpolynom."

Hallo,

ich gehe davon aus, daß Du weißt, was das Minimimalpolynom ist.

Wäre das von A vom Grad 1, so hätte es die Gestalt p(x)=x+a.

Wenn das das Minipol wäre, wäre [mm] Nullmatrix=A+a*E_3, [/mm] dh.     [mm] a=-aE_3. [/mm]
Dies ist nicht der Fall.
Also ist das Minimalpolynom mindestens vom Grad 2.

Es ist [mm] A^2= [/mm] 2A - [mm]1*E_3[/mm], dh. [mm] Nullmatrix=A^2 [/mm] - 2A - [mm] 1*E_3. [/mm]
Also ist A Nullstelle von [mm] q(x)=x^2-2x-1. [/mm]
Somit ist das Minimalpolynom höchstens vom Grad 2.

Insgesamt hat man: das Minipol ist vom Grad 2, und da es eindeutig bestimmt ist, ist [mm] q(x)=x^2-2x-1 [/mm] das Minimalpolynom.

Gruß v. Angela

Bezug
        
Bezug
Minimalpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Sa 26.04.2008
Autor: Annanna

La 2 beim Kebekus, stimmts? :)

Leider versteh ich auch nicht was er uns damit sagen wollte...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]