matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenÖkonomische FunktionenMinimalkostenkombination
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Ökonomische Funktionen" - Minimalkostenkombination
Minimalkostenkombination < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalkostenkombination: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:16 So 20.07.2008
Autor: NRWFistigi

Aufgabe
gegeben ist die Produktionsfunktion [mm] x=f(r1,r2)=30*r1^{0,25} *r2^{0,75}-->Isoquante [/mm]
und die Kostenfunktion: K(r1,r2)=16*r1+3*r2
Leiten sie die Minimalkostenkombination für x=30 her.

Hallo!
Folgendes schema habe ich mir für die aufgabe überlegt:

1. Koordinatensystem zeichnen
2. Isoquante für eine bestimmte Ausbringungsmenge x zeichnen
3. Angenommene Bugetgerade K zeichnen
4. Parallelverschiebung der Bugetgerade bis diese die Isoquante tangiert
5. Tangentialpunkte auf den Achsen abtragen

wie zeihcne ich die Isoquante?? ich kann ja net r1=0 setzen wie bei K(r1,r2), da ja sonst die ganze Isoquantengleichung gleich 0 wird!?

        
Bezug
Minimalkostenkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 So 20.07.2008
Autor: angela.h.b.


> gegeben ist die Produktionsfunktion [mm]x=f(r1,r2)=30*r1^{0,25} *r2^{0,75}-->Isoquante[/mm]
>  
> und die Kostenfunktion: K(r1,r2)=16*r1+3*r2
>  Leiten sie die Minimalkostenkombination für x=30 her.

Hallo,

Du sollst die Kosten [mm] K(r_1,r_2)=16*r_1+3*r_2 [/mm]  minimieren,

und Du weißt, daß [mm] 30=30*{r_1}^{0,25} *{r_2}^{0,75} [/mm]  gilt.
Dies kannst Du auflösen nach [mm] r_2, [/mm] das Ergebnis in [mm] K(r_1,r_2) [/mm] einsetzn.

K hängt nun nur noch von [mm] r_1 [/mm] ab. Du kannst  jetzt eine ganz normale Extremwertberechnung durchführen mit 1.Ableitung usw.

Oder ist dieser Weg unerwünscht?

Gruß v. Angela



>  Hallo!
>  Folgendes schema habe ich mir für die aufgabe überlegt:
>  
> 1. Koordinatensystem zeichnen
>  2. Isoquante für eine bestimmte Ausbringungsmenge x
> zeichnen
>  3. Angenommene Bugetgerade K zeichnen
>  4. Parallelverschiebung der Bugetgerade bis diese die
> Isoquante tangiert
>  5. Tangentialpunkte auf den Achsen abtragen
>  
> wie zeihcne ich die Isoquante?? ich kann ja net r1=0 setzen
> wie bei K(r1,r2), da ja sonst die ganze Isoquantengleichung
> gleich 0 wird!?


Bezug
                
Bezug
Minimalkostenkombination: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 Mo 21.07.2008
Autor: NRWFistigi

dieser weg ist unerwünscht..
es soll eine grafische lösung gemaht werden.
die analytische ist ja einfach.
Danke trotzdem.

Bezug
                
Bezug
Minimalkostenkombination: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Mo 21.07.2008
Autor: NRWFistigi

die grafische Lösung??

Bezug
                        
Bezug
Minimalkostenkombination: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mo 21.07.2008
Autor: Analytiker

Hi du,

> die grafische Lösung??

Zeichne die Kosten- und Produktionsfunktion ein. Nun "verschiebst" du die Isoquante (Steigung nicht ändern!) soweit, das sie das erste Mal an der Produktionsfunktion tangiert (Tangentialpunkt). Dieser Schnittpunkt ist die Minimalkostenfunktion...

Liebe Grüße
Analytiker
[lehrer]

Bezug
                                
Bezug
Minimalkostenkombination: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:09 Mo 21.07.2008
Autor: NRWFistigi

Hey,

mein problem ist einfach: Ich verstehe net wie ich die Isoquante einzeichnen soll!?!
Den rest mit der Kostenfunktion etc. verstehe ich ja auch. Die Isoquante muss ja konvex und monoton fallend sein? Muss ich für jeden r1 alle zugehörigen r2-werte  für eine bestimmte ausbringungsmenge von x ausrechnen und einzeichnen??
Es muss ja einen leichteren Weg geben!? Oder?

Vielen lieben Dank!

Bezug
                                        
Bezug
Minimalkostenkombination: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 So 27.07.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]