matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenMinimales Polynom & Matrixgrad
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Minimales Polynom & Matrixgrad
Minimales Polynom & Matrixgrad < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimales Polynom & Matrixgrad: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Do 24.05.2007
Autor: Chichisama

Aufgabe
Sei A [mm] \in M_{n} [/mm] mit n [mm] \ge [/mm] 2 eine Matrix vom Rang 1. Beweisen Sie, dass [mm] \mu_{A} [/mm] den Grad 2 hat

Ich denke seit Tagen über diese Aufgabe nach, doch komme auf keine Lösung, da mir der entscheidende Zusammenhang zwischen Minimalpolynom und dem Grad der Matrix fehlt.
Vielleicht kann mir jemand einen Tipp geben, wie man an diese Aufgabe rangeht.

        
Bezug
Minimales Polynom & Matrixgrad: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Do 24.05.2007
Autor: generation...x

Es hat was den Eigenwerten zu tun: wieviele von 0 verschiedene Eigenwerte kann eine Matrix mit Rang 1 haben? Warum?
Dann kommt noch die 0 dazu. Wie sieht dann das Minimalpolynom aus?

Bezug
        
Bezug
Minimales Polynom & Matrixgrad: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Do 24.05.2007
Autor: angela.h.b.

Hallo,

ergänzend zu generation...x' Tip noch folgendes:

Wenn der Rang der Matrix =1 ist, ist die Matrix ähnlich zu [mm] \pmat{ a_{11} & 0 &..&0\\ a_{21} & 0 &..&0\\ ..\vdots & \vdots &\vdots&\vdots\\ a_{n1} & 0 &..&0} [/mm]

Gruß v. Angela

Bezug
                
Bezug
Minimales Polynom & Matrixgrad: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Do 24.05.2007
Autor: Chichisama

Danke für die Tipps.

Eine Matrix vom Rang 1 hat nur einen Eigenwert [mm] \not= [/mm] 0.
Da immer nur die beiden ersten Summanden bei der Berechnung stehenbleiben. Allerdings weiß ich nicht wie ich das beweisen soll.

Zu Angela´s Tipp:
Ich weiß, dass das charakt. Polynom (und das Minimalpolynom) von zwei ähnlichen Matrizen gleich ist. Ich weiß nicht, ob ich mich irre, aber wenn ich das charakt. Polynom von der ähnl. Matrix ausrechnen würde, würde da ja [mm] x^{n} [/mm] rauskommen, da bis auf eine Spalte ja alles 0 ist.

Bezug
                        
Bezug
Minimales Polynom & Matrixgrad: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Do 24.05.2007
Autor: angela.h.b.


> Danke für die Tipps.
>  
> Eine Matrix vom Rang 1 hat nur einen Eigenwert [mm]\not=[/mm] 0.
>  Da immer nur die beiden ersten Summanden bei der
> Berechnung stehenbleiben. Allerdings weiß ich nicht wie ich
> das beweisen soll.
>
> Zu Angela´s Tipp:
>  Ich weiß, dass das charakt. Polynom (und das
> Minimalpolynom) von zwei ähnlichen Matrizen gleich ist.

Genau.

> Ich
> weiß nicht, ob ich mich irre, aber wenn ich das charakt.
> Polynom von der ähnl. Matrix ausrechnen würde, würde da ja
> [mm]x^{n}[/mm] rauskommen, da bis auf eine Spalte ja alles 0 ist.

Das ist nicht richtig. Rechne doch jetzt - als Experiment - man das charakteristische Polynom von [mm] \pmat{ 1 & 0&0 \\ 3 & 0&0\\ 4&0&0 } [/mm] aus.

Danach kriegst Du es für den allgemeinen Fall hin.

Gruß v. Angela

Bezug
                                
Bezug
Minimales Polynom & Matrixgrad: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 Fr 25.05.2007
Autor: Chichisama

Jetzt ist mir alles klar. Vielen Dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]