matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelMinimaler Abstand von Flugzeug
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Längen, Abstände, Winkel" - Minimaler Abstand von Flugzeug
Minimaler Abstand von Flugzeug < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimaler Abstand von Flugzeug: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:15 So 02.12.2007
Autor: Maggons

Aufgabe
Ermitteln sie zu welchem Zeitpunkt t die beiden Flugzeuge ihren kleinsten Abstand haben.

Flugzeug 1: [mm] \vektor{ 100\\ -2550\\228,75} [/mm] + t* [mm] \vektor{-0,1 \\ 22\\-1,5} [/mm]

Flugzeug 2: [mm] \vektor{ 53\\ -410\\43,75} [/mm] + t* [mm] \vektor{2 \\ -30\\4} [/mm]

Huhu

Ich habe leider keine Ahnung wie ich das hier lösen könnte außer durch stupides Ausprobieren.
In der Oberstufe lässt einen "minimal" ja irgendwie immer automatisiert eine Ableitung bilden, jedoch wüsste ich nicht, dass das hier möglich wäre :(

Wäre sehr dankbar für einen kleinen Denkanstoß :)

Ich habe die Frage in keinem anderen Internetforum oder dergleichen gestellt.

Ciao Lg

        
Bezug
Minimaler Abstand von Flugzeug: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 So 02.12.2007
Autor: tobbi

Hallo Maggons,

erstmal ist die Idee mit dem Ableiten schonmal relativ richtig. Hier nun der Denkanstoß zu dem, was du ableiten musst:

Das Flugzeug 1 befindet sich zu einem gegebenen Zeitpunkt t in dem Punkt P1 auf der gegeben Geraden. Das Flugzeug 2 befindet sich zum gleichen Zeitpunkt t im Punkt P2.

Der Abstand der Flugzeuge ist dann der von t-abhängige Verbindungsvektor der Punkte P1 und  P2 und den möchtest du nun minimieren.....

Hoffe, dass bringt dich auf die richtige Spur, schöne Grüße
Tobbi

Bezug
                
Bezug
Minimaler Abstand von Flugzeug: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 22:26 So 02.12.2007
Autor: Maggons

Huhu

Ja, ich hab dann doch noch "die richtige Spur" gefunden :D

Einfach alle Punkte in Abhängigkeit von t in die Abstandsformel einsetzen somit erhält man am Ende folgende Fkt.:

[mm] f(x)=\wurzel{2827,66*t² - 224422,4*t + 494334} [/mm]

Diese dann abgeleitet und null gesetzt ergibt:

x= 39,68

In f''(x) eingesetzt größer 0, somit liegt ein Minimum vor.

Auch nochmal durch Ausprobieren "gecheckt" und es scheint zu stimmen.

Schönen Dank und schönen Abend noch

Ciao

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]