matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesMinimale Grenzkosten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - Minimale Grenzkosten
Minimale Grenzkosten < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimale Grenzkosten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:09 Mi 30.06.2010
Autor: bb83

Hallo, wäre nett, wenn ihr mal drüber schauen und mich korrigieren könntet.

Aufgabe: Berechnung der minimalen Grenzkosten

[mm] K(x)=1,5x^3 [/mm] - [mm] 18x^2 [/mm] + 150x +147

K´(x) = [mm] 4,5x^2 [/mm] - 36x + 150

k"(x) = 9x - 36 / +36

9x=36/9

x=4

K(4) = 555

        
Bezug
Minimale Grenzkosten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:46 Mi 30.06.2010
Autor: Marcel

Hallo,

> Hallo, wäre nett, wenn ihr mal drüber schauen und mich
> korrigieren könntet.
>  
> Aufgabe: Berechnung der minimalen Grenzkosten
>  
> [mm]K(x)=1,5x^3[/mm] - [mm]18x^2[/mm] + 150x +147
>  
> K´(x) = [mm]4,5x^2[/mm] - 36x + 150

[ok]
  

> k"(x) = 9x - 36 / +36

[ok]

> k"(x) = 9x - 36 / +36

Hier fehlt $K''(x)=0$ linkerhand. Leider bekommst Du damit aber erstmal nur (eine) mögliche Extremstelle(n) von $K'$. Du musst oder solltest noch begründen, warum das auch eine tatsächliche Extremstelle ist!

Ich hab' übrigens nachgeguckt, falls andere auch mit den Begrifflichkeiten durcheinanderkommen: $K'$ bezeichnet hier die Grenzkostenfunktion bei gegebener Kostenfunktion [mm] $K\,.$ [/mm]
  

> 9x=36/9
>  
> x=4
>  
> K(4) = 555

Hier weiß' ich jetzt nicht, ob Du wirklich $K(4)$ berechnen sollst. Denn $K(4)$ ist ja die Kostenfunktion [mm] $K\,$ [/mm] ausgewertet an der Stelle [mm] $x=4\,,$ [/mm] aber $K'$ ausgewertet an der Stelle [mm] $x=4\,,$ [/mm] also [mm] $K'(4)\,,$ [/mm] sollte meines Erachtens logischerweise der Wert für die minimale(n) Grenzkosten sein.

P.S.:
Mit $K'''(x)=(9x-36)'=9 > 0$ (für alle [mm] $x\,$) [/mm] ist erkennbar, dass $K'$ an der Stelle [mm] $4\,$ [/mm] auch wirklich ein (lokales) Minimum hat.

P.P.S.:
Aus [mm] $K'(x)=4,5(x-4)^2-4,5*16+150=4,5(x-4)^2+78$ [/mm] folgt sofort, dass $K'$ an [mm] $x=4\,$ [/mm] eine lokale und globale Minimalstelle hat mit [mm] $K'(4)=78\,.$ [/mm]

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]