matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMetrischer Raum ???
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Metrischer Raum ???
Metrischer Raum ??? < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrischer Raum ???: Frage
Status: (Frage) beantwortet Status 
Datum: 23:30 Di 04.01.2005
Autor: zero1

Hallo erstmal! und viele Grüße an alle und alles gute in das neue Jahr 2005.
ich brauche hier ein paar Vorschläge für die folgende Aufgabe: (es ist leider auf Englisch)

Let f : [mm] \IR \to \IR [/mm] be continuous.
Assume that f(x + y) = f(x) +f(y) for all x, y [mm] \in \IR. [/mm]
Show that f is linear,
more precisely, f(x) = x · f(1) for all x [mm] \in \IR. [/mm]

Vielen Dank im voraus :)
mit eine bitte auf ein schnellen Antwort

Ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Metrischer Raum ???: ansatz
Status: (Antwort) fertig Status 
Datum: 00:25 Mi 05.01.2005
Autor: andreas

hi

was noch zu zeigen ist ist, dass [m] \forall \, \lambda \in \mathbb{R}: f(\lambda) = \lambda f(1) [/m]

nur schnell ein paar vorschläge:

zeige zuerst, dass [m] \forall \; n \in \mathbb{N} : f(n) = n f(1) [/m] und folgere analoges für [m] [mm] \mathbb{Z} [/mm] und daraus, dass [m] \forall \, q \in \mathbb{Q} : f(q) = qf(1) [/m], wobei man dabei eben ausnutzen muss, dass [m] q = \frac{a}{b} [/m] mit [m] a \in \mathbb{Z}, \; b \in \mathbb{N} [/m].

danach beutze die dichtheit von [m] \mathbb{Q} [/m] in [m] \mathbb{R} [/m], also dass es für [m] \lambda \in \mathbb{R} [/m] eine rationale folge [m] (q_n)_{n \in \mathbb{N}} [/m] gibt, so dass

[m] \lambda = \lim_{n \to \infty} q_n [/m]

dann kann man wegen der stetigkeit funktionsauswertung und grenzwert vertauschen, also

[m] f \left( \lim_{n \to \infty} q_n \right) = \lim_{n \to \infty} f(q_n) [/m]

verwende und erhält das gewünschte resultat.

hoffe das hilft erstmal. wenn du nicht weiterkommst kannst du dich melden.


grüße
andreas

Bezug
        
Bezug
Metrischer Raum ???: Übersetzung der Aufgabe notw.?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:10 Mi 05.01.2005
Autor: Marcel

Hallo Zero,

naja, vielleicht ist meine Mitteilung etwas merkwürdig, aber irgendwie habe ich den Eindruck, dass du die Aufgabe noch nicht mal übersetzt hattest; kann das sein? (Du schreibst, dass die Aufgabe leider in Englisch sei, machst dir aber nicht die Mühe, sie zu übersetzen (und das geht doch sehr schnell!)? Ich finde das etwas merkwürdig... Du solltest dir (zumindest, da du ja bestimmt mal Seminare bzw. ein Proseminar besuchen mußt) dich doch wenigstens etwas mit der Englischen (mathematischen) Sprache vertraut machen!)

> Let f : [mm]\IR \to \IR[/mm] be continuous.
> Assume that f(x + y) = f(x) +f(y) for all x, y [mm]\in \IR.[/mm]
>
> Show that f is linear,
> more precisely, f(x) = x · f(1) for all x [mm]\in \IR. [/mm]

Das heißt übersetzt:
Sei $f:$ [mm] $\IR \to \IR$ [/mm] stetig. Angenommen, es gelte [m]f(x+y)=f(x)+f(y)[/m] für alle $x,y [mm] \in \IR$. [/mm]

Zeigen Sie, dass f linear ist, präziser, es gilt [m]f(x)=x*f(1)[/m] für alle $x [mm] \in \IR$. [/mm]

Wie dem auch sei: Falls Bedarf besteht:
Ein "mathematisches Wörterbuch" findest du z.B. hier:
[]http://www.math.uni-goettingen.de/baule/wbuch.html
oder hier:
[]http://www.mathematik.uni-trier.de/~vordiplom2000/mathematisches_woerterbuch.pdf

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]