matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitMetrischer Raum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Metrischer Raum
Metrischer Raum < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrischer Raum: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 17:36 Di 12.12.2006
Autor: SusiSunny

Aufgabe
a) Sei X:= IN, d(m,n) := [mm] |\bruch{1}{m} [/mm] - [mm] \bruch{1}{n}| [/mm] (m, n [mm] \in\ [/mm] IN). Geben Sie die Menge aller stetigen Funktionen f: IN -> IR an.
b) Wir erweitern den metrischen Raum aus a) durch X := IN [mm] \cup [/mm] \ { [mm] \omega\} [/mm] und [mm] d(\omega\, \omega\ [/mm] ) =0, d(m, [mm] \omega\ [/mm] )= [mm] d(\omega\, [/mm] m) := [mm] \bruch{1}{m} [/mm] (m [mm] \in\ [/mm] IN). Warum erfüllt die erweiterte Metrik die Dreiecksungleichung ?
b) Wie sehen die stetigen reellwertigen Funktionen auf dem erweiterten metrischen Raum aus b) aus?

Hi!! Ich brauche dringend Hilfe für diese Aufgabe! Ich habe schon einige Ansätze versucht, komm aber einfach nicht auf den richtigen!! Ich hoffe, dass mir jemand bei den Aufgaben helfen kann!!
Ich bedanke mich schonmal im Voraus für die Hilfe!
MfG, SusiSunny

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Metrischer Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Mi 13.12.2006
Autor: SusiSunny

Ich bin trotz des abgelaufenen Fälligkeitszeitraum noch an der Lösung interessiert!

Bezug
        
Bezug
Metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 13.12.2006
Autor: SEcki

Hallo,

Ich geb mal ein paar Tips ...

> a) Sei X:= IN, d(m,n) := [mm]|\bruch{1}{m}[/mm] - [mm]\bruch{1}{n}|[/mm] (m,
> n [mm]\in\[/mm] IN). Geben Sie die Menge aller stetigen Funktionen
> f: IN -> IR an.

Stetigkeit ist Folgenstetigkeit - also zuerst mal überlegen: was sind denn die konvergenten Folgen in diesen Raum? Weißt du das? Jetzt nimm eine beliebige Funktion her ...

>  b) Wir erweitern den metrischen Raum aus a) durch X := IN
> [mm]\cup[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

\ { [mm]\omega\}[/mm] und [mm]d(\omega\, \omega\[/mm] ) =0, d(m, [mm]\omega\[/mm]

> )= [mm]d(\omega\,[/mm] m) := [mm]\bruch{1}{m}[/mm] (m [mm]\in\[/mm] IN). Warum erfüllt
> die erweiterte Metrik die Dreiecksungleichung ?

Fallunterscheidung.

>  b) Wie sehen die stetigen reellwertigen Funktionen auf dem
> erweiterten metrischen Raum aus b) aus?

Was passiert jetzt im Gegensatz zu a)? Was bedeutet es denn, wenn eine Folge konvergiert?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]