matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMetrischer Raum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Metrischer Raum
Metrischer Raum < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Mo 01.05.2006
Autor: Sherin

Aufgabe
Sei f: [mm] \IR^{2} \to \IR [/mm] definiert durch [mm] f(x,y)=\begin{cases} (x^{2} + y^{2}) sin ( \bruch{1}{x^{2}+y^{2})}, & \mbox{wenn } x^{2} + y^{2} \not= 0 \\ 0, & \mbox{wenn } x^{2} + y^{2} = 0 \end{cases} [/mm]

Gilt dann f [mm] \in C^{1} (\IR^{2}? [/mm]

Hallo,

ich kann mit der Aufgabenstellung irgendwie überhaupt gar nichts anfangen. Dieses [mm] C^{1} [/mm] heißt das, dass die Funktion einmal differenzierbar ist? Wenn ja, wie kann ich das überprüfen? Irgendwie komme ich noch gar nicht damit klar, dass man das mit 2 Variablen macht?

Würd mich freuen, wenn mir das jemand kurz erklären könnte!

Sherin

        
Bezug
Metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Mo 01.05.2006
Autor: MatthiasKr

Hallo sherin,


>  Hallo,
>  
> ich kann mit der Aufgabenstellung irgendwie überhaupt gar
> nichts anfangen. Dieses [mm]C^{1}[/mm] heißt das, dass die Funktion
> einmal differenzierbar ist?

Ja. [daumenhoch]

Wenn ja, wie kann ich das

> überprüfen? Irgendwie komme ich noch gar nicht damit klar,
> dass man das mit 2 Variablen macht?
>

Überall außer im nullpunkt ist die aussage ja sowieso klar. Es kommt also nur auf den nullpunkt an. Lass doch das [mm] $y^2$ [/mm] erstmal weg und stelle dir das ganze eindimensional vor.
Der Bruch im Sinus-term geht gegen unendlich wenn (x,y) gegen null geht. das heißt, der sinus oszilliert wild hin und her. Da sein betrag aber immer kleiner-gleich 1 ist, wird er von dem [mm] $x^2+y^2$-term [/mm] gedämpft und die ganze funktion geht gegen null.

Ein kriterium, wie du diffbarkeit im mehrdimensionalen zeigen kannst, ist dass die partiellen ableitungen stetig sind. versuch es doch mal damit!

VG
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]