matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMetrische Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Metrische Räume
Metrische Räume < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrische Räume: Abgeschlossenheit
Status: (Frage) beantwortet Status 
Datum: 11:53 Mi 15.06.2005
Autor: Nixchecker77

hi an alle,

Es seien X, Y metrische Räume, f : X [mm] \to [/mm] Y eine Abbildung.
Zeigen Sie, dass f genau dann stetig auf X ist, wenn für jede abgeschlossene
Menge A [mm] \subset [/mm] Y dass Urbild [mm] f^{-1}(A) \subset [/mm] X abgeschlossen ist.

Kann mir jeamand sagen wie ich hiermit anfangen kann??

thx schonmal im vorraus.

        
Bezug
Metrische Räume: Rueckfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 Mi 15.06.2005
Autor: SEcki


> hi an alle,
>  
> Es seien X, Y metrische Räume, f : X [mm]\to[/mm] Y eine Abbildung.
>  Zeigen Sie, dass f genau dann stetig auf X ist, wenn für
> jede abgeschlossene
>  Menge A [mm]\subset[/mm] Y dass Urbild [mm]f^{-1}(A) \subset[/mm] X
> abgeschlossen ist.
>  
> Kann mir jeamand sagen wie ich hiermit anfangen kann??


Wie habt ihr stetig definiert? bzw.: welche Aequivalenzen kennt ihr? (Normalerweise definiert man Stetigkeit auch durch Urbilder offener Mengen sind offen - aber dann wird da ja trivial.)

SEcki

Bezug
        
Bezug
Metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:14 Mi 15.06.2005
Autor: Julius

Hallo!

Also, ich gehe mal davon aus, dass ihr die Stetigkeit einer Abbildung zwischen metrischen Räumen so definiert habt, dass die Urbilder offener Mengen wieder offen sind.

Ist dann $A [mm] \subset [/mm] Y$ abgeschlossen, so ist [mm] $A^c$ [/mm] offen und daher auch: [mm] $f^{-1}(A^c)$, [/mm] da $f$ stetig ist. Nun gilt (mache dir das bitte klar):

[mm] $f^{-1}(A^c) [/mm] = [mm] \left( f^{-1}(A) \right)^c$, [/mm]

d.h. [mm] $\left(f^{-1}(A) \right)^c$ [/mm] ist offen in $X$, wodurch [mm] $f^{-1}(A)$ [/mm] in $X$ abgeschlossen ist.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]