matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesMetrik nachrechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Metrik nachrechnen
Metrik nachrechnen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik nachrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Do 20.10.2011
Autor: T_sleeper

Aufgabe
Wir definieren eine endliche Menge M und sei P die Menge aller Teilmengen von M.

Zeigen Sie, dass [mm] d(A,B)=|A\Delta [/mm] B| mit [mm] |A\Delta B|=A\backslash B\cup B\backslash [/mm] A eine Metrik auf P definiert.

Hallo,

die Dreiecksungleichung macht kleine Probleme.

Nehme ich mir bel. Mengen A,B,C aus P her, so gilt doch

[mm] |A\Delta B|=|A|+|B|-2|A\cap [/mm] B|, und [mm] |A\Delta C|+|C\Delta B|=|A|+|B|+2|C|-2|A\cap C|-2|C\cap [/mm] B|. Irgendwie sehe ich dann aber nicht, dass

[mm] |A|+|B|-2|A\cap B|\leq|A|+|B|+2|C|-2|A\cap C|-2|C\cap [/mm] B| sein soll, also [mm] 2|C|-2|A\cap C|-2|C\cap [/mm] B|.

Das muss aber irgendwie ersichtlich sein, aber wie?

Ich hab schon gezeigt, dass [mm] A\Delta B\subseteq(A\Delta C)\cup(C\Delta [/mm] B) ist. Hilft das irgendwie?

        
Bezug
Metrik nachrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Do 20.10.2011
Autor: Schadowmaster


> Wir definieren eine endliche Menge M und sei P die Menge
> aller Teilmengen von M.
>  
> Zeigen Sie, dass [mm]d(A,B)=|A\Delta[/mm] B| mit [mm]|A\Delta B|=A\backslash B\cup B\backslash[/mm]
> A eine Metrik auf P definiert.
>  Hallo,
>  
> die Dreiecksungleichung macht kleine Probleme.
>  
> Nehme ich mir bel. Mengen A,B,C aus P her, so gilt doch
>  
> [mm]|A\Delta B|=|A|+|B|-2|A\cap[/mm] B|, und [mm]|A\Delta C|+|C\Delta B|=|A|+|B|+2|C|-2|A\cap C|-2|C\cap[/mm]
> B|. Irgendwie sehe ich dann aber nicht, dass
>
> [mm]|A|+|B|-2|A\cap B|\leq|A|+|B|+2|C|-2|A\cap C|-2|C\cap[/mm] B|
> sein soll, also [mm]2|C|-2|A\cap C|-2|C\cap[/mm] B|.
>  
> Das muss aber irgendwie ersichtlich sein, aber wie?

hmm, erstmal umformen:
$|A [mm] \cap [/mm] B| + |C| [mm] \geq [/mm] |A [mm] \cap [/mm] C| + |B [mm] \cap [/mm] C|$

In der Form dürfte es vielleicht etwas ersichtlicher sein...
Guck hier mal, wie du die rechte Seite größer kriegst als |C| und überleg dir dann, wieso dann $|A [mm] \cap [/mm] B|$ ausreichend stark steigen muss, damit die Ungleichung bestehen bleibt... ;)
Dann ist es für dich hoffentlich ersichtlich, der nächste Schritt wäre dann ein korrekter mathematischer Beweis.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]