matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMethode von Lagrange
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Methode von Lagrange
Methode von Lagrange < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Methode von Lagrange: Lösung und Hilfe bei Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:35 Do 08.12.2005
Autor: scientyst

Aufgabe:

Ein Produzent kann aus den Mengen x,y >0 der Güter 1 und 2 als Input einen Output z herstellen, dessen Menge gegeben ist durch die Produktionsfunktion :

[mm] z={f(x,y)}:=x*\wurzel{y} [/mm]

Bei der Produktion ist als Nebenbedingung die Gleichung

[mm] x^2+y=50 [/mm] zu beachten.

Finden sie mit Hilfe der Methode von Lagrange den Maximalen Output zmax.

Lösung:

[mm] ZF:{f(x,y)}=x*\wurzel{y}=> [/mm] max.
[mm] NB:{g(x,y)}=x^2+y-50 [/mm]

Lagrangefunktion : L [mm] f(x,y,\lambda)=x*\wurzel{y}+\lambda(x^2+y-50) [/mm]

Partielle Ableitungen:

[mm] L'x(x,y,\lambda)=\wurzel{y}+2x \lambda [/mm]
[mm] L'y(x,y,\lambda)=0,5y^-^0^,^5*x+ \lambda [/mm]
[mm] L'\lambda(x,y,\lambda)=x^2+y-50 [/mm]

Jetzt kommt mein Problem.Ich weiss leider nicht,wie ich jetzt auf den maximalen Output komme.Wäre super,wenn mir das jemand mal vorrechnen könnte.

        
Bezug
Methode von Lagrange: nächster Schritt
Status: (Antwort) fertig Status 
Datum: 13:59 Do 08.12.2005
Autor: banachella

Hallo!

> Partielle Ableitungen:
>  
> [mm]L'x(x,y,\lambda)=\wurzel{y}+2x \lambda[/mm]
>  
> [mm]L'y(x,y,\lambda)=0,5y^-^0^,^5*x+ \lambda[/mm]
>  
> [mm]L'\lambda(x,y,\lambda)=x^2+y-50[/mm]
>  
> Jetzt kommt mein Problem.Ich weiss leider nicht,wie ich
> jetzt auf den maximalen Output komme.Wäre super,wenn mir
> das jemand mal vorrechnen könnte.

Die partiellen Ableitungen hast du ja schon richtig ausgerechnet. Jetzt musst du sie eigentlich nur noch alle gleich $0$ setzen und die zugehörige Lösung [mm] $x,y,\lambda$ [/mm] bestimmen. Tipp hierzu: Löse die erste Gleichung nach [mm] $\lambda$ [/mm] auf und setze sie in die zweite ein!
Letztlich kommst du so auf zwei Lösungen: [mm] $\left(\pm 5,25,\mp \bruch 12\right)$. [/mm] Davon kommt ohnehin nur eine in Frage, wegen $x>0$. Also ist dein Kandidat für's Maximum [mm] $x_0=5,\ y_0=25,\ \lambda_0=-5$. [/mm]
Weißt du, wie du überprüfst, ob $L$ dort ein Maximum hat?
Den maximalen Output erhältst du dann durch [mm] $z_0=f(x_0,y_0)$. [/mm]

Gruß, banachella



Bezug
                
Bezug
Methode von Lagrange: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:41 Do 08.12.2005
Autor: scientyst

Kannst du mir mal bitte zeigen wie du auf das Ergebnis gekommen bist,kriege das irgendwie nicht raus,danke.

Bezug
                        
Bezug
Methode von Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Do 08.12.2005
Autor: banachella

Hallo!

Zunächst mal habe ich die drei Gleichungen aufgeschrieben:

(I)    [mm] $\sqrt y+2x\lambda=0$ [/mm]
(II)   [mm] $\bruch 12\bruch 1{\sqrt y}x+\lambda=0$ [/mm]
(III)  [mm] $x^2+y-5=0$ [/mm]

Dann löse ich (I) nach [mm] $\lambda$ [/mm] auf:
(I')   [mm] $\lambda=-\bruch{\sqrt y}{2x}$ [/mm]

Das setze ich in (II) ein:
(II')  [mm] $\bruch 12\bruch 1{\sqrt y}x-\bruch{\sqrt y}{2x}=0$ [/mm]
        [mm] $\Leftrightarrow\ \bruch x{\sqrt y}=\bruch{\sqrt y}x$ [/mm]
        [mm] $\Leftrightarrow\ x^2=y$ [/mm]

Jetzt in (III) eingesetzt:
(III') [mm] $x^2+x^2-50=0$ [/mm]
        [mm] $\Leftrightarrow\ x^2=25\ \Leftrightarrow\ x=\pm [/mm] 5$

Und wieder rückwärts:
(II'')  [mm] $y=x^2=25$ [/mm]
(III'') [mm] $\lambda=-\bruch{\sqrt y}{2x}=-\bruch{5}{\pm 10}=\mp \bruch [/mm] 12$

So müsste es eigentlich passen. Hoffentlich. ;-)

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]