matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikMesspunkte - Matrixrang
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - Messpunkte - Matrixrang
Messpunkte - Matrixrang < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messpunkte - Matrixrang: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:02 Mo 03.01.2011
Autor: Lena.Moon

Aufgabe
Es sind symmetrisch liegende Messpunkte gegeben:

[mm] t_1 [/mm] | [mm] t_2 [/mm] | [mm] t_3 [/mm] | 0 | [mm] -t_3 [/mm] | [mm] -t_2 [/mm] | [mm] -t_1 [/mm]
[mm] y_1 [/mm] | [mm] y_2 [/mm] | [mm] y_3 [/mm] | 0 | [mm] -y_3 [/mm] | [mm] -y_2 [/mm] | [mm] -y_1 [/mm]

Dazu soll eine Ausgleichsparabel y(t) = [mm] a_1 [/mm] + [mm] a_{2}t [/mm] + [mm] a_3 t^2 [/mm] bestimmt werden. Warum hat die Matrix A vollen Rang?

Hi,

ich stecke leider bei einer Numerik-Aufgabe fest.

Bisher hatten wird nur die Interpolation für lineare Fälle behandelt, wobei ein lineares Ausgleichsproblem durch x* [mm] \in \IR^{n} [/mm] gelöst wird, wenn [mm] A^{T}Ax^{\*} [/mm] = [mm] A^{T}b [/mm] (sog. Normalgleichung) gilt.

Wie schaut denn in dem obigen Fall die Matrix A überhaupt aus? Ich meine da etwas von der Vandermonde-Matrix aufgeschnappt zu haben. Hilft mir das?

Vielen Dank für Eure Hilfe!

LG
Lena

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Messpunkte - Matrixrang: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Mo 03.01.2011
Autor: MathePower

Hallo Lena.Moon,


[willkommenmr]


> Es sind symmetrisch liegende Messpunkte gegeben:
>  
> [mm]t_1[/mm] | [mm]t_2[/mm] | [mm]t_3[/mm] | 0 | [mm]-t_3[/mm] | [mm]-t_2[/mm] | [mm]-t_1[/mm]
>  [mm]y_1[/mm] | [mm]y_2[/mm] | [mm]y_3[/mm] | 0 | [mm]-y_3[/mm] | [mm]-y_2[/mm] | [mm]-y_1[/mm]
>  
> Dazu soll eine Ausgleichsparabel y(t) = [mm]a_1[/mm] + [mm]a_{2}t[/mm] + [mm]a_3 t^2[/mm]
> bestimmt werden. Warum hat die Matrix A vollen Rang?
>  Hi,
>  
> ich stecke leider bei einer Numerik-Aufgabe fest.
>  
> Bisher hatten wird nur die Interpolation für lineare
> Fälle behandelt, wobei ein lineares Ausgleichsproblem
> durch x* [mm]\in \IR^{n}[/mm] gelöst wird, wenn [mm]A^{T}Ax^{\*}[/mm] =
> [mm]A^{T}b[/mm] (sog. Normalgleichung) gilt.
>  
> Wie schaut denn in dem obigen Fall die Matrix A überhaupt
> aus? Ich meine da etwas von der Vandermonde-Matrix
> aufgeschnappt zu haben. Hilft mir das?


Ja, das hilft Dir weiter.


>  
> Vielen Dank für Eure Hilfe!
>  
> LG
>  Lena
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Messpunkte - Matrixrang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Mo 03.01.2011
Autor: Lena.Moon

Danke, die Antwort war für mich doch etwas kurz.

Ich weiß nicht, wie die Matrix A aussieht und wie man das mit dem Rang zeigt (mit der Determinante?).

Ich hoffe, du kannst mir da noch weiterhelfen.

Bezug
                        
Bezug
Messpunkte - Matrixrang: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Mo 03.01.2011
Autor: MathePower

Hallo Lena-Moon,

> Danke, die Antwort war für mich doch etwas kurz.
>  
> Ich weiß nicht, wie die Matrix A aussieht und wie man das
> mit dem Rang zeigt (mit der Determinante?).


Determinante geht nur bei einer quadratischen Matrix.


>  
> Ich hoffe, du kannst mir da noch weiterhelfen.


Die Matrix A sieht so aus:


[mm]\pmat{1 & t_{1} ¬& t_{1}^{2} \\ 1 & t_{2} & t_{2}^{2} \\ 1 & t_{3} & t_{3}^{2} \\ 1 & 0 & 0^{2} \\ 1 & -t_{3} ¬& \left(-t_{3}\right)^{2} \\1 & -t_{2} ¬& \left(-t_{2}\right)^{2} \\ 1 & -t_{1} & \left(-t_{1}\right)^{3}}[/mm]


Gruss
MathePower

Bezug
                                
Bezug
Messpunkte - Matrixrang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Mo 03.01.2011
Autor: Lena.Moon

Vielen Dank dafür!
Jetzt stellt sich natürlich noch die Rangfrage. Ich bin da wirklich mit meinem Wissen am Ende, wie ich den vollen Rang zeigen soll! Ist der Rang denn gleich 3 oder abhängig von den Messwerten?

Bezug
                                        
Bezug
Messpunkte - Matrixrang: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Mo 03.01.2011
Autor: MathePower

Hallo Lena.Moon,

> Vielen Dank dafür!
>  Jetzt stellt sich natürlich noch die Rangfrage. Ich bin
> da wirklich mit meinem Wissen am Ende, wie ich den vollen
> Rang zeigen soll! Ist der Rang denn gleich 3 oder abhängig
> von den Messwerten?  


Um den Rang einer Matrix zu bestimmen, führst Du den
Gauß-Algorithmus durch.

Beispiele zur Rangbestimmung einer Matrix gibt es hier:

[]Rangbestimmung einer Matrix


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]