matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMessbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Messbarkeit
Messbarkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit: Ansatz
Status: (Frage) beantwortet Status 
Datum: 01:28 Mi 16.03.2011
Autor: bedburger84

Aufgabe
[Dateianhang nicht öffentlich]


Mir fehlt hier völlig ein Ansatz. Ich weiß, dass stetige Funktionen zum Beipspiel messbar sind, diese Funktion ist jedoch nicht stetig.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Mi 16.03.2011
Autor: fred97

Ich nehme an [mm] \IR' [/mm] ist = [mm] $\IR \cup \{\infty, - \infty\}$. [/mm] Wenn das so ist, so ist

              $ [mm] 1_{(- \infty,0]}$ [/mm]  messbar (warum ?).

Was weißt Du über Produkte und Summen messbarer Funktionen ?

FRED

Edit: ich glaube eher, dass [mm] $\IR'=\IR^1= \IR$ [/mm] ist. Stimmts ?

Bezug
                
Bezug
Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:12 Mi 16.03.2011
Autor: bedburger84

Dass diese auch wieder messbar sind. Das reicht also als Begründung. Dass die Funktion als Summe messbarer Größen wieder messbar ist?

Bezug
                        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Mi 16.03.2011
Autor: fred97


> Dass diese auch wieder messbar sind. Das reicht also als
> Begründung. Dass die Funktion als Summe messbarer Größen
> wieder messbar ist?

Mir würde das reichen.

FRED


Bezug
                                
Bezug
Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:20 Mi 16.03.2011
Autor: bedburger84

Und wie zeige ich dann, dass |x| messbar ist? Oder [mm] 2^x*1_{(\infty,0)}(x)? [/mm]

Bezug
                                        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Mi 16.03.2011
Autor: fred97


> Und wie zeige ich dann, dass |x| messbar ist?

|x| ist stetig


> Oder
> [mm]2^x*1_{(\infty,0)}(x)?[/mm]  


[mm] 2^x [/mm] ist stetig.

[mm] 1_{(-\infty,0)} [/mm]  ist messbar, weil (- [mm] \infty,0) [/mm]  messbar ist.


FRED


Bezug
                                                
Bezug
Messbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:23 Mi 16.03.2011
Autor: bedburger84

*Schleier vor den Augen verschwindet*

Danke schön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]