matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieMessbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Maßtheorie" - Messbarkeit
Messbarkeit < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:09 Mi 14.06.2006
Autor: kirayou

Hallo zusammen!

hab jetzt eine Frage und brauch dringende Hilfe!

wie kann man beweisen,dass eine Funktion (von R nach R) mit abzählbar vielen Unstetigkeitsstellen messbar ist.

Vielen Dank!!

kira

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Messbarkeit: Lösungsansatz
Status: (Antwort) fertig Status 
Datum: 05:34 Fr 16.06.2006
Autor: just-math

Hallo kirayou,

ich glaube, bei deiner Aufgabe kannst Du so vorgehen:  Du musst ja zeigen, dass jedes Urbild einer messbaren Teilmenge von [mm] \IR [/mm]
unter der Funktion f auch wieder messbar ist. Sei [mm] A\subseteq \IR [/mm] messbar. Seien [mm] u_i,i\in\IN [/mm] mit oE   [mm] i vielen Unstetigkeitsstellen von f. Dann ist    [mm] f^{-1}(A)=\bigcup_{i} (f^{-1}(A)\cap (u_i,u_{i+1})\: )\:\:\:\cup\bigcup_{i}f^{-1}(A)\cap\{u_i\}) [/mm]

Die rechte dieser beiden Teilmengen ist abzählbar und als solche eine Menge vom Maß 0.

Nun ist   [mm] f^{-1}(A)\cap (u_i,u_{i+1})= f^{-1}(A\cap f((u_i,u_{i+1}))) [/mm] das Urbild einer messbaren Menge unter einer auf dem Intervall [mm] (u_i,u_{i+1}) [/mm]
stetigen Abbilldung, also messbar, und die noch verbliebene ''linke'' Menge ist also als abzählbare Vereinigung solcher auch messbar.

Viele Grüsse

just-math


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]