matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKnobelaufgabenMeromorphe Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Knobelaufgaben" - Meromorphe Funktionen
Meromorphe Funktionen < Knobelaufgaben < Café VH < Internes < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Knobelaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Meromorphe Funktionen: Aufgabe
Status: (Übungsaufgabe) Aktuelle Übungsaufgabe Status (unbefristet) 
Datum: 07:36 Fr 12.02.2010
Autor: fred97

Aufgabe


Sei $ \ f$ eine auf [mm] \IC [/mm] meromorphe Funktion mit folgender Eigenschaft:

              [mm] $\integral_{\gamma}^{}{(p(z))^2f(z) dz}=0$ [/mm]

für jeden geschlossenen Integrationsweg  [mm] \gamma [/mm] in [mm] \IC, [/mm] auf dem keine Pole von $ \ f$ liegen, und für jedes Polynom p.

Man zeige: $ \ f$ ist ganz.

              

Wer wagt sich an diese schöne Aufgabe ?

FRED

        
Bezug
Meromorphe Funktionen: Dummyfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:41 Fr 12.02.2010
Autor: Herby

.

Dummyfrage!

Bezug
                
Bezug
Meromorphe Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:43 Fr 12.02.2010
Autor: fred97


> .
>  
> Dummyfrage!

Hallo Herby,

herzlichen Dank

FRED

Bezug
        
Bezug
Meromorphe Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:55 Fr 12.02.2010
Autor: felixf

Hallo Fred!

Bevor ich schlafen gehe, versuche ich mich noch an dieser Aufgabe:

> Sei [mm]\ f[/mm] eine auf [mm]\IC[/mm] meromorphe Funktion mit folgender
> Eigenschaft:
>  
> [mm]\integral_{\gamma}^{}{(p(z))^2f(z) dz}=0[/mm]
>  
> für jeden geschlossenen Integrationsweg  [mm]\gamma[/mm] in [mm]\IC[/mm] und
> jedes Polynom p.
>  
> Man zeige: [mm]\ f[/mm] ist ganz.

Sei [mm] $z_0 \in \IC$, [/mm] und sei $f(x) = [mm] \sum_{n=-\infty}^\infty a_n [/mm] (z - [mm] z_0)^n$ [/mm] die Laurententwicklung von $f$ in [mm] $z_0$. [/mm] Es ist zu zeigen, dass [mm] $a_n [/mm] = 0$ ist fuer alle $n < 0$.

Sei nun [mm] $\gamma$ [/mm] ein geschlossener Integrationsweg, der [mm] $z_0$ [/mm] genau einmal umlaeuft und der weder auf dem Rand noch im inneren eine Polstelle von $f$ liegen hat.

Mit der Wahl $p(z) = (z - [mm] z_0)^t$, [/mm] $t = 0, 1, [mm] \dots$ [/mm] bekommt man $0 = [mm] \int_\gamma p(z)^2 [/mm] f(z) dz = [mm] \int_\gamma \sum_{n=-\infty}^\infty a_n [/mm] (z - [mm] z_0)^{n + 2 t} [/mm] dz$. Jetzt ist bekannt (Cauchyscher Integralsatz, Stammfunktion von [mm] $\frac{1}{(z - z_0)^\ell}$ [/mm] fuer [mm] $\ell [/mm] > 1$, [mm] $\int_\gamma \frac{1}{z - z_0)} [/mm] dz = 2 [mm] \pi [/mm] i$), dass dieses Integral den Wert [mm] $a_{-1 - 2 t} [/mm] 2 [mm] \pi [/mm] i$ annimmt. Daraus folgt, dass [mm] $a_n [/mm] = 0$ ist fuer jedes ungrade $n < 0$.

Bleiben also noch die graden $n$. Hier muss man ein wenig tricksen, und zwar $(z - [mm] z_0)^{2 t + 1}$ [/mm] mit $t [mm] \in \IN$ [/mm] schreiben als Summe/Differenz von Quadraten in [mm] $\IC[z]$. [/mm] Nun ist ja [mm] $\frac{1}{4} [/mm] (((z - [mm] z_0) [/mm] + [mm] 1)^2 [/mm] - ((z - [mm] z_0) [/mm] - [mm] 1)^2) [/mm] = z - [mm] z_0$; [/mm] setze $P := [mm] \frac{1}{2} [/mm] ((z - [mm] z_0) [/mm] + 1)$ und $Q := [mm] \frac{i}{2} [/mm] ((z - [mm] z_0) [/mm] + 1)$. Damit bekommt man [mm] $a_{-2} [/mm] 2 [mm] \pi [/mm] i = [mm] \int_\gamma [/mm] (z - [mm] z_0) [/mm] f(z) dz = [mm] \int_\gamma P(z)^2 [/mm] f(z) dz + [mm] \int_\gamma Q(z)^2 [/mm] f(z) dz = 0 + 0$.

Allgemein bekommt man [mm] $a_{-2 n} [/mm] 2 [mm] \pi [/mm] i = [mm] \int_\gamma [/mm] (z - [mm] z_0)^{2 n - 1} [/mm] f(z) dz = [mm] \int_\gamma (P(z)^2 [/mm] + [mm] Q(z)^2)^{2 n - 1} [/mm] f(z) dz = [mm] \int_\gamma \sum_{k=0}^{2 n - 1} \binom{2 n - 1}{k} (P(z)^2)^k (Q(z)^2)^{2 n - 1 - k} [/mm] f(z) dz = [mm] \sum_{k=0}^{2 n - 1} \binom{2 n - 1}{k} \int_\gamma (P(z)^k Q(z)^{2 n - 1 - k})^2 [/mm] f(z) dz = 0$.

LG Felix


Bezug
                
Bezug
Meromorphe Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:11 Fr 12.02.2010
Autor: fred97


> Hallo Fred!
>  
> Bevor ich schlafen gehe, versuche ich mich noch an dieser
> Aufgabe:
>  
> > Sei [mm]\ f[/mm] eine auf [mm]\IC[/mm] meromorphe Funktion mit folgender
> > Eigenschaft:
>  >  
> > [mm]\integral_{\gamma}^{}{(p(z))^2f(z) dz}=0[/mm]
>  >  
> > für jeden geschlossenen Integrationsweg  [mm]\gamma[/mm] in [mm]\IC[/mm] und
> > jedes Polynom p.
>  >  
> > Man zeige: [mm]\ f[/mm] ist ganz.
>  
> Sei [mm]z_0 \in \IC[/mm], und sei [mm]f(x) = \sum_{n=-\infty}^\infty a_n (z - z_0)^n[/mm]
> die Laurententwicklung von [mm]f[/mm] in [mm]z_0[/mm]. Es ist zu zeigen, dass
> [mm]a_n = 0[/mm] ist fuer alle [mm]n < 0[/mm].
>  
> Sei nun [mm]\gamma[/mm] ein geschlossener Integrationsweg, der [mm]z_0[/mm]
> genau einmal umlaeuft und der weder auf dem Rand noch im
> inneren eine Polstelle von [mm]f[/mm] liegen hat.
>  
> Mit der Wahl [mm]p(z) = (z - z_0)^t[/mm], [mm]t = 0, 1, \dots[/mm] bekommt
> man [mm]0 = \int_\gamma p(z)^2 f(z) dz = \int_\gamma \sum_{n=-\infty}^\infty a_n (z - z_0)^{n + 2 t} dz[/mm].
> Jetzt ist bekannt (Cauchyscher Integralsatz, Stammfunktion
> von [mm]\frac{1}{(z - z_0)^\ell}[/mm] fuer [mm]\ell > 1[/mm], [mm]\int_\gamma \frac{1}{z - z_0)} dz = 2 \pi i[/mm]),
> dass dieses Integral den Wert [mm]a_{-1 - 2 t} 2 \pi i[/mm] annimmt.
> Daraus folgt, dass [mm]a_n = 0[/mm] ist fuer jedes ungrade [mm]n < 0[/mm].
>  
> Bleiben also noch die graden [mm]n[/mm]. Hier muss man ein wenig
> tricksen, und zwar [mm](z - z_0)^{2 t + 1}[/mm] mit [mm]t \in \IN[/mm]
> schreiben als Summe/Differenz von Quadraten in [mm]\IC[z][/mm]. Nun
> ist ja [mm]\frac{1}{4} (((z - z_0) + 1)^2 - ((z - z_0) - 1)^2) = z - z_0[/mm];
> setze [mm]P := \frac{1}{2} ((z - z_0) + 1)[/mm] und [mm]Q := \frac{i}{2} ((z - z_0) + 1)[/mm].
> Damit bekommt man [mm]a_{-2} 2 \pi i = \int_\gamma (z - z_0) f(z) dz = \int_\gamma P(z)^2 f(z) dz + \int_\gamma Q(z)^2 f(z) dz = 0 + 0[/mm].
>  
> Allgemein bekommt man [mm]a_{-2 n} 2 \pi i = \int_\gamma (z - z_0)^{2 n - 1} f(z) dz = \int_\gamma (P(z)^2 + Q(z)^2)^{2 n - 1} f(z) dz = \int_\gamma \sum_{k=0}^{2 n - 1} \binom{2 n - 1}{k} (P(z)^2)^k (Q(z)^2)^{2 n - 1 - k} f(z) dz = \sum_{k=0}^{2 n - 1} \binom{2 n - 1}{k} \int_\gamma (P(z)^k Q(z)^{2 n - 1 - k})^2 f(z) dz = 0[/mm].




Hallo Felix,

sehr schöne Lösung, Respekt !

Was man zeigen muß hast Du ja erkannt:

          
$ [mm] \integral_{\gamma}^{}{p(z)f(z) dz}=0 [/mm] $


für jeden geschlossenen Integrationsweg  $ [mm] \gamma [/mm] $ in $ [mm] \IC [/mm] $, ....,  und jedes Polynom p.

Und das bekommt man etwas einfacher so:

Ist p ein Polynom , so setze $q= [mm] \bruch{p-1}{2}$: [/mm] Dann:

      $ [mm] \integral_{\gamma}^{}{p(z)f(z) dz}= \integral_{\gamma}^{}{(2q(z)+1)f(z) dz} [/mm] =  [mm] \integral_{\gamma}^{}{q^2(z)f(z) dz}+\integral_{\gamma}^{}{(2q(z)+1)f(z) dz} =\integral_{\gamma}^{}{(q(z)+1)^2f(z) dz} [/mm] =0$


Grüße FRED


>  
> LG Felix
>  


Bezug
                        
Bezug
Meromorphe Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:30 Fr 12.02.2010
Autor: felixf

Hallo Fred!

> Und das bekommt man etwas einfacher so:
>  
> Ist p ein Polynom , so setze [mm]q= \bruch{p-1}{2}[/mm]: Dann:
>  
> [mm]\integral_{\gamma}^{}{p(z)f(z) dz}= \integral_{\gamma}^{}{(2q(z)+1)f(z) dz} = \integral_{\gamma}^{}{q^2(z)f(z) dz}+\integral_{\gamma}^{}{(2q(z)+1)f(z) dz} =\integral_{\gamma}^{}{(q(z)+1)^2f(z) dz} =0[/mm]

Das ist finde ich eine viel schoenere Loesung.

Ich hatte halt versucht, $z - [mm] z_0$ [/mm] (bzw. einfach $z$) als Summe von (zwei) Quadraten zu schreiben (eigentlich war es eine Differenz, aber man hat ja [mm] $i^2 [/mm] = -1$), und habe daraus gefolgert, dass man jedes Element aus [mm] $\IC[z]$ [/mm] als (endliche) Summe von Quadraten schreiben kann.

Deine Loesung ist viel schoener, da man gleich $p = [mm] (q^2 [/mm] + 1) - [mm] q^2 [/mm] = (q + [mm] 1)^2 [/mm] + (i [mm] q)^2$ [/mm] bekommt mit $q = [mm] \frac{p - 1}{2}$, [/mm] und sich nicht erst umstaendlich mit dem Binomischen Lehrsatz etwas zusammenbasteln muss.

LG Felix


Bezug
        
Bezug
Meromorphe Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Fr 12.02.2010
Autor: rainerS

Hallo Fred!

> Sei [mm]\ f[/mm] eine auf [mm]\IC[/mm] meromorphe Funktion mit folgender
> Eigenschaft:
>  
> [mm]\integral_{\gamma}^{}{(p(z))^2f(z) dz}=0[/mm]
>  
> für jeden geschlossenen Integrationsweg  [mm]\gamma[/mm] in [mm]\IC,[/mm]
> auf dem keine Pole von [mm]\ f[/mm] liegen, und für jedes Polynom
> p.
>  
> Man zeige: [mm]\ f[/mm] ist ganz.

Zunächst einmal kann f nur Pole gerader Ordnung haben. Ich wähle eine beliebige Polstelle [mm] $z_0$, [/mm] integriere entlang einer Kreislinie [mm] $\gamma$ [/mm] um [mm] $z_0$, [/mm] innerhalb derer kein weiterer Pol liegt, und zwar mit den Polynomen

[mm] p_k(z) = (z-z_0)^k [/mm], [mm] $k\in \IN_0$. [/mm]

Die Integrale

  [mm]\integral_{\gamma}^{}{(p_k(z))^2f(z) dz}=0[/mm]
  
sind bis auf einen konstanten Faktor gleich den Koeffizienten [mm] $a_{-1-2k}$, [/mm] die damit die alle gleich 0 sind.

Der Hauptteil der Laurentreihe von f hat also nur Koeffizienten mit geradem Index.

Wähle nun für ein beliebiges [mm] $z_1\not=z_0$ [/mm] die Polynome

[mm] q_k(z) = (z-z_1)^k = ((z-z_0) +(z_0-z_1))^k [/mm], [mm] $k\in \IN$. [/mm]

Darstellung von [mm] $((z-z_0) +(z_0-z_1))^k$ [/mm] als Summe von Potenzen von [mm] $(z-z_0)$ [/mm] und [mm] $(z_0-z_1)$ [/mm] und Einsetzen ins Integral ergibt sukzessive, dass alle Koeffizienten des Hauptteils der Laurentreihe von f gleich 0 sind.

Zum Beispiel:

[mm] 0= \integral_{\gamma}^{}{(q_1(z))^2f(z) dz} = \integral_{\gamma}^{}{(z-z_0)^2 f(z) dz} + 2 (z_0-z_1) \integral_{\gamma}^{}{(z-z_0) f(z) dz} + (z_0-z_1)^2 \integral_{\gamma}^{}{ f(z) dz} = 2 (z_0-z_1) \integral_{\gamma}^{}{(z-z_0) f(z) dz} [/mm]

Also ist der Koeffizient [mm] $a_{-2}=0$. [/mm]

Viele Grüße
   Rainer




Bezug
                
Bezug
Meromorphe Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:31 Fr 12.02.2010
Autor: fred97

Hallo Rainer,

auch eine schöne Lösung

Gruß  FRED

Bezug
        
Bezug
Meromorphe Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:34 Sa 27.02.2010
Autor: SEcki

Hallo,

Ich sehe die Lösung nicht, aber wäre interssiert daran, wie die anderen dies hier gelöst haben. Wenn es nicht zu frech ist, könnte mir jemand die Leserechte geben? (Ich denke nach einer Zeit sollten wir bei allen solchen Aufgaben die Lösungen frei geben. Meinungen?)

SEcki

Bezug
                
Bezug
Meromorphe Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:47 Sa 27.02.2010
Autor: felixf

Moin,

> Ich sehe die Lösung nicht, aber wäre interssiert daran,
> wie die anderen dies hier gelöst haben. Wenn es nicht zu
> frech ist, könnte mir jemand die Leserechte geben?

das ist nicht frech ;-) Du kannst jetzt alles lesen.

> (Ich denke nach einer Zeit sollten wir bei allen solchen
> Aufgaben die Lösungen frei geben. Meinungen?)

Ja, aber nicht zu frueh; es sollen ja noch Leute die Chance habe das selber zu loesen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Knobelaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]