matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMengensysteme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Mengensysteme
Mengensysteme < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengensysteme: Tipp
Status: (Frage) überfällig Status 
Datum: 15:18 Mi 22.11.2006
Autor: Coco84

Aufgabe
Sei [mm] (\mathcal{A}i) [/mm] i [mm] \in [/mm] I eine Familie von sigma-Algebren über groß Omega.

a) Zeigen Sie, dass der Schnitt

[mm] \bigcap_{i\in I} (\mathcal{A}i) [/mm] := [mm] \{A \subset groß Omega: A ist in jedem (\mathcal{A}i) enthalten \} [/mm]

wieder eine sigma-Algebra ist.

b) Sei [mm] \mathcal{A'} [/mm] ein beliebiges Mengensystem. Zeigen Sie, dass

[mm] \bigcap_{\mathcal{A} \supset \mathcal{A'} } \mathcal{A} [/mm]
[mm] \mathcal{A} [/mm] sigma-Algebra
die kleinste sigma-Algebra ist, die [mm] \mathcal{A'} [/mm] enthält.

Hallo!

a) Also den ersten Tei der Aufgabe haben wir zeigen können.
b) Allerdings haben wir bei dem zweiten Teil das Problem, dass wir nicht genau wissen wie man die kleinste sigma-Algebra zeigt. Man muss irgendwie mit dem Aufgabenteil a) arbeiten!

Hat vielleicht jemand einen Tipp für uns? Denn was genau ist denn
[mm] \bigcap_{\mathcal{A} \supset \mathcal{A'} } \mathcal{A} [/mm]
(Also der Durchschnitt  eines Mengensystems? Welche Mengen sind denn darin enthalten?)

Wir würden uns über jede Hilfe sehr freuen!

Vielen Dank

Coco



        
Bezug
Mengensysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Mi 22.11.2006
Autor: luis52

$ [mm] \bigcap_{\mathcal{A} \supset \mathcal{A'} } \mathcal{A} [/mm] $ ist der Durchschnitt aller [mm] $\sigma$-Algebren, [/mm] die das Mengensystem [mm] $\mathcal{A} [/mm] $ (als Elemente) enthalten. Nach dem ersten Teil ist das eine [mm] $\sigma$-Algebra... [/mm]

hth

Bezug
        
Bezug
Mengensysteme: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 24.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]