matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengensystem - Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Mengensystem - Beweis
Mengensystem - Beweis < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengensystem - Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:08 Sa 03.11.2007
Autor: abi2007LK

Hallo,

es ist echt hart als Doofkopf die Übungsblätter der Uni alleine zu machen. Aber zum Glück gibts euch.

Aufgabe: Es seien M ein nichtleeres Mengensystem und A eine Menge, Zeigen Sie, dass dann gilt:

A [mm] \cup( \bigcap_{B \in M} [/mm] B ) = [mm] \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)

Mein Ansatz:

Behauptung: (siehe das, was zu beweisen ist, gilt)

Es gilt: x [mm] \in [/mm] A  oder x [mm] \in \bigcap_{B \in M} [/mm] B
[mm] \gdw [/mm] x [mm] \in [/mm] (A [mm] \cup [/mm] B) für alle B [mm] \in [/mm] M
[mm] \gdw \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)

In Worten:

Ich nehme mir ein beliebiges x aus A [mm] \cup( \bigcap_{B \in M} [/mm] B ). Dann ist dieses x endweder in A oder in [mm] \bigcap_{B \in M} [/mm] B - oder in beiden. Aber x ist auf jeden Fall in der Vereinigung von A und B.

Ist das richtig? Bitte sagt ja. Ich bin hier sowas von am verzweifeln.



        
Bezug
Mengensystem - Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Sa 03.11.2007
Autor: Somebody


> Hallo,
>  
> es ist echt hart als Doofkopf die Übungsblätter der Uni
> alleine zu machen. Aber zum Glück gibts euch.
>  
> Aufgabe: Es seien M ein nichtleeres Mengensystem und A eine
> Menge, Zeigen Sie, dass dann gilt:
>  
> $A [mm] \cup( \bigcap_{B \in M} [/mm] B ) = [mm] \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)$
>  
> Mein Ansatz:
>  
> Behauptung: (siehe das, was zu beweisen ist, gilt)
>  
> Es gilt: $x [mm] \in [/mm] A$  oder $x [mm] \in \bigcap_{B \in M} [/mm] B [mm] \gdw [/mm] x [mm] \in [/mm] (A [mm] \cup [/mm] B)$ für alle $B [mm] \in [/mm] M [mm] \gdw \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)$

>  
> In Worten:
>  
> Ich nehme mir ein beliebiges x aus $A [mm] \cup( \bigcap_{B \in M} [/mm] B )$. Dann ist dieses x endweder in A oder in [mm] $\bigcap_{B \in M} [/mm] B$ - oder in beiden. Aber x ist auf jeden Fall in der
> Vereinigung von A und B.
>  
> Ist das richtig? Bitte sagt ja. Ich bin hier sowas von am
> verzweifeln.

Was Du überlegt hast, mag schon in Ordnung sein, aber an Deiner Stelle würde ich alles möglichst sauber (sag meinetwegen: pedantisch) hinschreiben, damit nicht ein Fall vergessen geht.
Du willst also die Äquivalenz $A [mm] \cup \bigcap_{B \in M} [/mm] B = [mm] \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)$ beweisen. Diesen Beweis zerlegst Du in zwei Schritte:
1. Schritt: Beweis von $A [mm] \cup \bigcap_{B \in M} [/mm] B  [mm] \subseteq \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)$.
Sei [mm] $x\in [/mm] A [mm] \cup\bigcap_{B \in M} [/mm] B$, also [mm] $x\in [/mm] A$ oder [mm] $x\in \bigcap_{B \in M} [/mm] B$. Zu zeigen ist [mm] $x\in \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)$.
Ist [mm] $x\in [/mm] A$, so gilt auch für alle [mm] $B\in [/mm] M$, dass [mm] $x\in A\cup [/mm] B$ ist, also ist [mm] $x\in \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)$.
Ist [mm] $x\in \bigcap_{B \in M} [/mm] B$, so ist [mm] $x\in [/mm] B$, für alle [mm] $B\in [/mm] M$ und daher auch [mm] $x\in A\cup [/mm] B$, für alle [mm] $B\in [/mm] M$, d.h. [mm] $x\in \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)$.
Damit ist diese Richtung der Inklusion bewiesen.

2. Schritt: Beweis von $A [mm] \cup\bigcap_{B \in M} [/mm] B [mm] \supseteq \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)$.
Sei [mm] $x\in \bigcap_{B \in M} [/mm] (A [mm] \cup [/mm] B)$. Zu zeigen ist [mm] $x\in A\cup \bigcap_{B\in M}B$. [/mm]
Es gibt zwei Möglichkeiten: entweder ist [mm] $x\in [/mm] B$, für alle [mm] $B\in [/mm] M$. Dann ist aber auch [mm] $x\in\bigcap_{B \in M} [/mm] B$ und daher [mm] $x\in A\cup \bigcap_{B \in M} [/mm] B$.
Ist jedoch [mm] $x\notin B_0$ [/mm] für ein [mm] $B_0\in [/mm] M$, so muss, wegen [mm] $x\in \bigcap_{B\in M}(A\cup [/mm] B)$ auch [mm] $x\in A\cup B_0$ [/mm] und, wegen [mm] $x\notin B_0$, [/mm] also [mm] $x\in [/mm] A$ sein. Daraus folgt aber sogleich [mm] $x\in [/mm] A [mm] \cup\bigcap_{B \in M} [/mm] B$.
Damit ist auch diese Richtung der Inklusion bewiesen, weshalb die behauptete Äquivalenz gilt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]