matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehreMengenlehre
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Naive Mengenlehre" - Mengenlehre
Mengenlehre < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:23 Di 01.03.2011
Autor: Mistasy

Aufgabe
Die Menge der natürlichen Zahlen

Aufgabe 1.2.1

Man bestimme die Anzahl der Elemente von der  Menge aller natürlichen Zahlen zwischen 1 und 1000, deren Dezimaldarstellung die Ziffer 5 nicht enthält.

ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hab den Lösungszettel vor mir liegen und mein Prof kommt auf 729. Bloß irgendwie hab ich das nicht ganz richtig hinbekommen. Wär auf jedenfall cool, wenn mir das nochmal jemand erklären könnte. Komm irgendwie auf 820.

        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Di 01.03.2011
Autor: abakus


> Die Menge der natürlichen Zahlen
>  
> Aufgabe 1.2.1
>  
> Man bestimme die Anzahl der Elemente von der  Menge aller
> natürlichen Zahlen zwischen 1 und 1000, deren
> Dezimaldarstellung die Ziffer 5 nicht enthält.
>  ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hab den Lösungszettel vor mir liegen und mein Prof kommt
> auf 729. Bloß irgendwie hab ich das nicht ganz richtig
> hinbekommen. Wär auf jedenfall cool, wenn mir das nochmal
> jemand erklären könnte. Komm irgendwie auf 820.  

Hallo,
betrachten wir mal die Zahlen von 0 bis 999 und schauen, wie viele davon keine 5 enthalten. Dabei lassen wir mal führende Nullen zu (also 000, 001, ..., 999).
Das dürfen wir, weil z.B. 027 genausowenig eine 5 enthält wie einfach 27.
Solche dreistellige Zahlen dürfen an jeder Stelle eine von 9 möglichen  Ziffern haben (alle Ziffern außer 5).
Das gibt 9*9*9=729 Möglichkeiten.
Nun ist zwar die 0 nicht mit dabei, aber dafür die 1000. Es bleibt also bei 729 Möglichkeiten, nicht die 5 zu bekommen.
Gruß Abakus


Bezug
                
Bezug
Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Mi 02.03.2011
Autor: Mistasy

Irgendwie versteh ich trotzdem noch nicht warum man jetzt 9 mal 9 mal 9 nimmt. Könntest du das einfach nochmal erläutern?

Bin jetzt zwar auch nochmal alle Zahlen durchgegangen und ich komm jetzt auch auf das richtige Ergebnis, bloß ich frage mich einfach noch, was das mit der 9 auf sich hat???

Bezug
                        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mi 02.03.2011
Autor: Al-Chwarizmi


> Irgendwie versteh ich trotzdem noch nicht warum man jetzt 9
> mal 9 mal 9 nimmt. Könntest du das einfach nochmal
> erläutern?
>
> Bin jetzt zwar auch nochmal alle Zahlen durchgegangen und
> ich komm jetzt auch auf das richtige Ergebnis, bloß ich
> frage mich einfach noch, was das mit der 9 auf sich hat???


An jeder der drei Stellen der Zahl (betrachten wir zunächst
die Zahlen von 000 bis 999 !) wären ja grundsätzlich
10 Ziffern möglich. Also gibt es insgesamt 10*10*10=1000
Zahlen von 0 bis und mit 999.
Ist die Ziffer 5 "verboten", so sind an jeder Stelle eben nur
noch 10-1=9 Ziffern erlaubt. Insgesamt haben wir also in
der Folge der Zahlen von 000 bis und mit 999 genau 9*9*9
Zahlen, welche keine Ziffer 5 enthalten.
Da weder die Zahl 000 noch die Zahl 1000 eine 5 enthalten,
ist es einerlei, ob man von der Menge der Zahlen von 000
bis 999 oder von den Zahlen von 001 bis 1000 ausgeht.

LG
  


Bezug
                                
Bezug
Mengenlehre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:14 Do 03.03.2011
Autor: Mistasy

Vielen Dank für das nette erläutern... Habe es verstanden. Dankeschön !! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]