matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesMengenlehre
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - Mengenlehre
Mengenlehre < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre: Bestimmen von Mengen
Status: (Frage) beantwortet Status 
Datum: 21:24 So 18.04.2010
Autor: times

Aufgabe
Bestimme ob folgende Aussagen wahr (w) oder falsch (f) sind (i-viii).

N := {Ø,1,2,{3}}

(i) 3 ∈ N,
(ii) 3 [mm] \subseteq [/mm] N,
(iii) {3} [mm] \subseteq [/mm] N,
(iv) {3} ∈ N,
(v) Ø [mm] \subseteq [/mm] N,
(vi) Ø ∈ N,
(vii) {Ø} [mm] \subseteq [/mm] N,
(viii) {Ø} ∈ N

Diese Aufgabe muss ich bearbeiten, doch ich komme nicht weiter, ich muss es zu jedem begründen warum, außer wenn es wahr ist, ich stelle euch meine Lösungsansätze schon einmal dabei, wäre super wenn ihr mir villt. ein bisschen helfen könnt.

(i) 3 ∈ N,  falsch, da 3 eine Teilmenge ist
(ii) 3 [mm] \subseteq [/mm] N, wahr, da sich die Teilmenge 3 in der Menge N befindet
(iii) {3} [mm] \subseteq [/mm] N, falsch da die Menge 3 schon eine Teilmenge ist
(iv) {3} ∈ N, wahr, da die die Teilmenge ein Element von N ist
(v) Ø [mm] \subseteq [/mm] N, wahr da die leere Menge eine Teilmenge von N ist
(vi) Ø ∈ N, wahr, da die leere Menge ein Element von N ist
(vii) {Ø} [mm] \subseteq [/mm] N, wahr da die leere Menge eine Teilmenge von N ist
(viii) {Ø} ∈ N, falsch da die Teilmenge der leeren Menge kein Element von N ist

        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 So 18.04.2010
Autor: angela.h.b.


> Bestimme ob folgende Aussagen wahr (w) oder falsch (f) sind
> (i-viii).
>  
> N := {Ø,1,2,{3}}

Hallo,

da unten ist nicht alles richtig.

Ich versuche mal, Dir ein paar Dinge zu erklären in der Hoffnung, daß Du dann mit der Aufgabe besser klarkommst.

Deine Menge N enthält vier Elemente, welche von unterschiedlicher Machart sind: die Zahlen 1 und 2, und die Mengen [mm] \emptyset [/mm] und [mm] \{3\}. [/mm]
Es könnten auch noch Katzen und Hunde drin sein und Säcke, die gebratene Tulpen enthalten - in einer Menge kann völlig verschiedenes gesammelt werden.

Also: die 4 Elemente von N sind [mm] \emptyset, [/mm] 1, 2, [mm] \{3\}. [/mm]
Es ist z.B. [mm] 1\in [/mm] N, hingegen ist [mm] \{1\}\not\in [/mm] N.

Was sind Teilmengen von N? Teilmengen sind Mengen, in denen Elemente von N versammelt sind.
Ein Beispiel für eine zweielementige-Teilmenge von N wäre [mm] \red{ \{}1,\{3\}\red{\}}. [/mm]

Die leeren Menge ist Teilmenge einer jeden Menge.

Vielleicht schaust Du jetzt nochmal durch, ob es Stellen gibt, an denen Du Änderungen vornehmen möchtest.

Gruß v. Angela


>  
> (i) 3 ∈ N,
>  (ii) 3 [mm]\subseteq[/mm] N,
>  (iii) {3} [mm]\subseteq[/mm] N,
>  (iv) {3} ∈ N,
>  (v) Ø [mm]\subseteq[/mm] N,
>  (vi) Ø ∈ N,
>  (vii) {Ø} [mm]\subseteq[/mm] N,
>  (viii) {Ø} ∈ N
>  
> Diese Aufgabe muss ich bearbeiten, doch ich komme nicht
> weiter, ich muss es zu jedem begründen warum, außer wenn
> es wahr ist, ich stelle euch meine Lösungsansätze schon
> einmal dabei, wäre super wenn ihr mir villt. ein bisschen
> helfen könnt.
>  
> (i) 3 ∈ N,  falsch, da 3 eine Teilmenge ist
>  (ii) 3 [mm]\subseteq[/mm] N, wahr, da sich die Teilmenge 3 in der
> Menge N befindet
>  (iii) {3} [mm]\subseteq[/mm] N, falsch da die Menge 3 schon eine
> Teilmenge ist
>  (iv) {3} ∈ N, wahr, da die die Teilmenge ein Element von
> N ist
>  (v) Ø [mm]\subseteq[/mm] N, wahr da die leere Menge eine Teilmenge
> von N ist
>  (vi) Ø ∈ N, wahr, da die leere Menge ein Element von N
> ist
>  (vii) {Ø} [mm]\subseteq[/mm] N, wahr da die leere Menge eine
> Teilmenge von N ist
>  (viii) {Ø} ∈ N, falsch da die Teilmenge der leeren
> Menge kein Element von N ist


Bezug
        
Bezug
Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Mo 19.04.2010
Autor: times

Ich habe nach deinem Tipp meine Lösung nun ein wenig überarbeitet, ich hoffe es ist nun richtig und ich habe nicht noch mehr Fehler eingebaut ;D

(i) 3 ∈ N,  wahr, da es auch ein Element von N ist
(ii) 3 $ [mm] \subseteq [/mm] $ N, wahr, da sich die Teilmenge 3 in der Menge N befindet
(iii) {3} $ [mm] \subseteq [/mm] $ N, falsch da die Menge 3 schon eine Teilmenge ist
(iv) {3} ∈ N, wahr, da die die Teilmenge ein Element von N ist
(v) Ø $ [mm] \subseteq [/mm] $ N, falsch, da die leere Menge ein Element von N ist
(vi) Ø ∈ N, wahr, da die leere Menge ein Element von N ist
(vii) {Ø} $ [mm] \subseteq [/mm] $ N, falsch, da die leere Menge ein Element von N ist
(viii) {Ø} ∈ N, falsch da die Teilmenge der leeren Menge kein Element von N ist

Liebe Grüße,
Tim

Bezug
                
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 19.04.2010
Autor: fred97


> Ich habe nach deinem Tipp meine Lösung nun ein wenig
> überarbeitet, ich hoffe es ist nun richtig und ich habe
> nicht noch mehr Fehler eingebaut ;D
>  
> (i) 3 ∈ N,  wahr, da es auch ein Element von N ist

3 [mm] \in [/mm] N ist falsch ! Es ist {3}  [mm] \in [/mm] N



> (ii) 3 [mm]\subseteq[/mm] N, wahr, da sich die Teilmenge 3 in der
> Menge N befindet


Nein es ist falsch ! Die Zahl  3 ist doch keine Teilmenge von N !


>  (iii) {3} [mm]\subseteq[/mm] N, falsch da die Menge 3 schon eine
> Teilmenge ist


Komische Begründung ... ?  Es ist {3} [mm] \in [/mm] N


>  (iv) {3} ∈ N, wahr,

Ja

> da die die Teilmenge ein Element von N ist

das ist doch Unsinn !







>  (v) Ø [mm]\subseteq[/mm] N, falsch, da die leere Menge ein Element
> von N ist


Nein , es ist richtig. die leere Menge ist Teilmenge jeder Menge


>  (vi) Ø ∈ N, wahr, da die leere Menge ein Element von N
> ist



O.K.

>  (vii) {Ø} [mm]\subseteq[/mm] N, falsch, da die leere Menge ein
> Element von N ist


O.K.

>  (viii) {Ø} ∈ N, falsch


O.K.

FRED


> da die Teilmenge der leeren
> Menge kein Element von N ist
>
> Liebe Grüße,
>  Tim


Bezug
                        
Bezug
Mengenlehre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 Mo 19.04.2010
Autor: angela.h.b.


> >  (vii) {Ø} [mm]\subseteq[/mm] N, falsch, da die leere Menge ein

> > Element von N ist
>  
>
> O.K.

Hallo,

nur mal zur Sicherheit:

[mm] \emptyset [/mm] ist ein Element von N, und deshalb ist [mm] \{\emptyset\} [/mm] eine Teilmenge von N.

Gruß v. Angela

Bezug
                                
Bezug
Mengenlehre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Mo 19.04.2010
Autor: fred97


> > >  (vii) {Ø} [mm]\subseteq[/mm] N, falsch, da die leere Menge ein

> > > Element von N ist
>  >  
> >
> > O.K.
>  
> Hallo,
>  
> nur mal zur Sicherheit:
>  
> [mm]\emptyset[/mm] ist ein Element von N, und deshalb ist
> [mm]\{\emptyset\}[/mm] eine Teilmenge von N.




Du hast natürlich recht

gruß FRED

>  
> Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]