matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesMengenlehre
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - Mengenlehre
Mengenlehre < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre: Teilmenge
Status: (Frage) beantwortet Status 
Datum: 13:29 Mo 13.04.2015
Autor: headbanger

Aufgabe
<br>
Sei [mm]\Omega[/mm] eine Menge und seien A[mm] \subseteq \Omega[/mm] und [mm] B \subseteq \Omega[/mm]

dann gilt:

[mm]A \cap B = \emptyset \Rightarrow A \subseteq \Omega \setminus B[/mm]


<br>


Meine Frage ist bezüglich der Teilmengenbeziehung von B und Omega.

Ich habe mir ein Venn-Diagramm aufgezeichnet, 2 kleine Kreise A und B (sich nicht schneidend) im großen Kreis [mm] \Omega[/mm].

Bedeutet diese Aussage dann, dass A eine Teilmenge von Omega ist, aber nur für die Elemente von Omega  im "kreis von A liegen"?

--> da sich die Kreise nicht schneiden ist B dann von der Teilmenge [mm]A \subseteq \Omega[/mm] abzuziehen? Sprich die Restmenge ist dann [mm]A \subseteq \Omega \setminusB[/mm][mm] \setminus B[/mm]

        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Mo 13.04.2015
Autor: DieAcht

Hallo headbanger!


> <br>
>  Sei [mm]\Omega[/mm] eine Menge und seien A[mm] \subseteq \Omega[/mm] und [mm] B \subseteq \Omega[/mm]
>  
> dann gilt:
>  
> [mm]A \cap B = \emptyset \Rightarrow A \subseteq \Omega \setminus B[/mm]
>  
> <br>
>  
>
> Meine Frage ist bezüglich der Teilmengenbeziehung von B
> und Omega.
>  
> Ich habe mir ein Venn-Diagramm aufgezeichnet, 2 kleine
> Kreise A und B (sich nicht schneidend) im großen Kreis [mm] \Omega[/mm].

(Dann berücksichtigst du für [mm] \Omega [/mm] nur endliche Mengen, aber das
ist nicht weiter schlimm. Abhilfe: [mm] \Omega [/mm] ist das "Universum" der
beiden "Kreise/Planeten" [mm] $A\$ [/mm] und [mm] $B\$, [/mm] wobei sich beide Kreise/Pla-
neten nicht "schneiden".)

> Bedeutet diese Aussage dann, dass A eine Teilmenge von
> Omega ist, aber nur für die Elemente von Omega  im "kreis
> von A liegen"?

Ich verstehe deine Aussage nicht ganz. Es ist

      [mm] $A\subseteq\Omega:\gdw\forall x\in A:x\in\Omega$. [/mm]

> --> da sich die Kreise nicht schneiden ist B dann von der
> Teilmenge [mm]A \subseteq \Omega[/mm] abzuziehen?

Nein. Es ist [mm] $B\$ [/mm] von [mm] \Omega [/mm] "abzuziehen". Es ist

      [mm] $\Omega\setminus B:=\{x\in\Omega\mid x\not\in B\}$. [/mm]

> Sprich die Restmenge ist dann [mm]A \subseteq \Omega \setminusB[/mm][mm] \setminus B[/mm]

Ja, aber so richtig verstanden hast du das wohl noch nicht.

In "deinem" Venn-Diagramm ist [mm] $\Omega\setminus [/mm] B$ folgendes:

[Dateianhang nicht öffentlich]

Ist es jetzt klar(er)? Kannst du das nun auch beweisen?

Übrigens: Wegen [mm] B\subseteq\Omega [/mm] schreibt man auch [mm] $\Omega\setminus B=B^c$ [/mm] (Komplement).


Gruß
DieAcht


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Mengenlehre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Mi 15.04.2015
Autor: headbanger

danke für die mühe... *sprachlos*
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]