matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehreMengenbeziehung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Naive Mengenlehre" - Mengenbeziehung
Mengenbeziehung < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenbeziehung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:49 Sa 25.06.2011
Autor: steve.joke

Hallo,

ich habe hier garde ein verständnisproblem.

ich habe eine beschränkte Menge A mit [mm] A=\{x\in \IN | x\le y\} [/mm]

Und dazu die Menge [mm] B=\{x\in \IN |\exists a\in A: x\le a\} [/mm]

Kann mir jemand vielleicht sagen, wie diese Mengen in Beziehung stehen? ich verstehe das gerade nicht so richtig.

Am liebsten noch mit einem Beispiel.

Grüße

        
Bezug
Mengenbeziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 So 26.06.2011
Autor: Marcel

Hallo,

> Hallo,
>  
> ich habe hier garde ein verständnisproblem.
>  
> ich habe eine beschränkte Menge A mit [mm]A=\{x\in \IN | x\le y\}[/mm]
>  
> Und dazu die Menge [mm]B=\{x\in \IN |\exists a\in A: x\le a\}[/mm]
>  
> Kann mir jemand vielleicht sagen, wie diese Mengen in
> Beziehung stehen? ich verstehe das gerade nicht so richtig.

das ist ganz einfach:
Es gilt $B [mm] \subseteq A\,.$ [/mm] Denn:
Sei $x [mm] \in B\,.$ [/mm] Dann ist $x [mm] \in \IN$ [/mm] und es existiert ein $a [mm] \in [/mm] A$ mit $x [mm] \le a\,.$ [/mm] Wegen $a [mm] \in [/mm] A$ gilt aber insbesondere $a [mm] \le y\,,$ [/mm] so dass
$$x [mm] \le [/mm] a [mm] \le [/mm] y$$
und damit auch $x [mm] \le [/mm] y$ folgt. Also folgt $x [mm] \in A\,.$ [/mm] Da $x [mm] \in [/mm] B$ beliebig war, folgt $B [mm] \subseteq A\,.$ [/mm]

Beispiel:
Sei [mm] $y=11,25\,.$ [/mm] Dann ist [mm] $A=\{n \in \IN: n \le 11,25\}=\{1,2,3,\ldots,11\}$ [/mm] (sofern bei Euch $0 [mm] \notin \IN$). [/mm]

Jede mögliche Menge " [mm] $B\,$ [/mm] " (ich inidziere die nun aus gewissen Gründen, wie Du gleich siehst) aus obiger Form ist dann
[mm] $$B_1=\{n \in \IN: n \le 1\}=\{1\}\,,$$ [/mm]
[mm] $$B_2=\{n \in \IN: n \le 2\}=\{1,2\}\,,$$ [/mm]
[mm] $$B_3=\{n \in \IN: n \le 3\}=\{1,2,3\}\,,$$ [/mm]
$$.$$
$$.$$
$$.$$
[mm] $$B_{11}=\{n \in \IN: n \le 11\}=\{1,2,3,\ldots,11\}\,.$$ [/mm]

Du siehst: Jedes [mm] $B_i$ ($i=1,\ldots,11$) [/mm] erfüllt [mm] $B_i \subseteq A\,.$ [/mm]

Gruß,
Marcel

Bezug
                
Bezug
Mengenbeziehung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:23 So 26.06.2011
Autor: steve.joke

HI Marcel,

danke für die nette Erklärung.

Siehste, ich hatte das nämlich falsch verstanden. Ich dachte, dass das Max. der Menge A auch immer in der Menge C enthalten sein muss, also z.B. bei deinen Mengen

[mm] B_1=\{1, 11} [/mm] oder [mm] B_3=\{1,2,3,11\} [/mm]

Das ist aber falsch so, richtig?? denn ab der Grenze, die ich mir setze, mit Grenze meine ich den Wert a, müssen alle Elemente aus [mm] \IN [/mm] die [mm] \le [/mm] a sind, in B sein, richtig ne??

Und mal eine andere Frage, wie könnte ich beweisen, dass es ein [mm] n\in [/mm] B, mit S(n) [mm] \not\in [/mm] B? S ist hierbei die Nachfolgerfunktion im Peanoaxiom.

Bezug
                        
Bezug
Mengenbeziehung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:32 Mi 29.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]