matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengenbeweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Mengenbeweise
Mengenbeweise < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:43 Sa 24.10.2009
Autor: az118

Aufgabe
Beweisen oder Widerlegen Sie! Fertigen Sie zusätzlich eine Skizze an!

(a) (A [mm] \cup [/mm] (B\ C)) = (B\ (A [mm] \cup [/mm] C)) [mm] \cup [/mm] A

(c) A = (A [mm] \cup [/mm] B [mm] \cup [/mm] C)\ ((B [mm] \cup [/mm] C)\ A)

Hallo, also ich habe mir erstmal die Skizzen gemacht und heraus bekommen, dass a. falsch ist. c. wäre laut skizze war.
wenn ich jetzt den normalen Mengenbeweis durchführe, steht bei mir zum schluß:

a.) (B\ (A [mm] \cup [/mm] C)) [mm] \cup [/mm] A = A [mm] \cup [/mm] (B\ A [mm] \cap [/mm] B\ C) und das ist ja nicht gleich (A [mm] \cup [/mm] (B\ C))  

c.) bekomme ich nicht richtig hin?

wäre nett, wenn mal jemand rüber schaut...

        
Bezug
Mengenbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Mi 28.10.2009
Autor: felixf

Hallo!

> Beweisen oder Widerlegen Sie! Fertigen Sie zusätzlich eine
> Skizze an!
>  
> (a) (A [mm]\cup[/mm] (B\ C)) = (B\ (A [mm]\cup[/mm] C)) [mm]\cup[/mm] A
>  
> (c) A = (A [mm]\cup[/mm] B [mm]\cup[/mm] C)\ ((B [mm]\cup[/mm] C)\ A)
>
>  Hallo, also ich habe mir erstmal die Skizzen gemacht und
> heraus bekommen, dass a. falsch ist. c. wäre laut skizze
> wahr.

Nein: (a) ist ebenfalls wahr.

>  wenn ich jetzt den normalen Mengenbeweis durchführe,
> steht bei mir zum schluß:
>  
> a.) (B\ (A [mm]\cup[/mm] C)) [mm]\cup[/mm] A = A [mm]\cup[/mm] (B\ A [mm]\cap[/mm] B\ C) und
> das ist ja nicht gleich (A [mm]\cup[/mm] (B\ C))  

Nur weil die Ausdruecke nicht gleich aussehen, muessen sie noch lange nicht nicht gleich sein. Es ist doch $A [mm] \cup [/mm] ((B [mm] \setminus [/mm] A) [mm] \cap [/mm] (B [mm] \setminus [/mm] C)) = (A [mm] \cup [/mm] (B [mm] \setminus [/mm] A)) [mm] \cap [/mm] (A [mm] \cup [/mm] (B [mm] \setminus [/mm] C)) = (A [mm] \cup [/mm] B) [mm] \cap [/mm] (A [mm] \cup [/mm] (B [mm] \setminus [/mm] C)) = A [mm] \cup [/mm] (B [mm] \cap [/mm] (B [mm] \setminus [/mm] C))$.

Damit solltest du jetzt auf $A [mm] \cup [/mm] (B [mm] \setminus [/mm] C)$ kommen.

> c.) bekomme ich nicht richtig hin?

Mach es doch ganz klassisch. Nimm ein Element $x [mm] \in [/mm] A$ und zeige, dass es in $(A [mm] \cup [/mm] B [mm] \cup [/mm] C) [mm] \setminus [/mm] ((B [mm] \cup [/mm] C) [mm] \setminus [/mm] A)$ liegt. Und dann nimm ein Element $y [mm] \in [/mm] (A [mm] \cup [/mm] B [mm] \cup [/mm] C) [mm] \setminus [/mm] ((B [mm] \cup [/mm] C) [mm] \setminus [/mm] A)$ und zeige, dass es in $A$ liegt.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]