matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengenbeweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Mengenbeweise
Mengenbeweise < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:01 Fr 02.02.2007
Autor: Zeta

Aufgabe
1.
Seien a, b, c Mengen. Dann gilt:

(i) $a - b = a - (a [mm] \cap [/mm] b)$
(ii) $a - b = a~gdw~a [mm] \cap [/mm] b = [mm] \emptyset [/mm] $
(iii) $a - b = [mm] \emptyset~gdw~a \subseteq [/mm] b$
(iv) $a - (b-c) = (a - b) [mm] \cup [/mm] (a [mm] \cap [/mm] c)$
(v) $ (a-b)-c = a-(b [mm] \cup [/mm] c) $

2.
Seien a, b, c Mengen. Dann gilt (Assoziativgesetz):

(i) $(a [mm] \cup [/mm] b) [mm] \cup [/mm] c = a [mm] \cup [/mm] (b [mm] \cup [/mm] c)$
(ii) $(a [mm] \cap [/mm] b) [mm] \cap [/mm] c = a [mm] \cap [/mm] (b [mm] \cap [/mm] c)$

3.
Für alle Mengen a, b, c gilt (Distributivgesetz):

(i) $(a [mm] \cup [/mm] b) [mm] \cap [/mm] c = (a [mm] \cap [/mm] c) [mm] \cup [/mm] (b [mm] \cap [/mm] c)$
(ii) $(a [mm] \cap [/mm] b) [mm] \cup [/mm] c = (a [mm] \cup [/mm] c) [mm] \cap [/mm] (b [mm] \cup [/mm] c)$

gdw = "genau dann wenn"

Hallo,

ich beschäftige mich im Moment mit der Mengenlehre anhand des Buches von Oliver Deiser, allerdings fehlen mir bei diesen Übungen richtige Ansätze. Wie geht man an solche Beweise ran? Ich kenne natürlich die verschiedenen Definitionen, nur wie zeige ich damit diese Aussagen?

Und noch eine kleine Frage zu der Definition des relativen Komplements:
"Seien a, b Mengen und a [mm] \subseteq [/mm] b. Dann heißt b - a das relative Komplement von a in b. Ist b fixiert, so nennen wir b - a kurz das Komplement von a und setzen [mm] $a^c [/mm] = b - a$."

Was heißt in diesem Zusammenhang "fixiert"?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Viele Grüße,
Zeta

        
Bezug
Mengenbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Fr 02.02.2007
Autor: angela.h.b.


> 1.
>  Seien a, b, c Mengen. Dann gilt:
>  
> (i) [mm]a - b = a - (a \cap b)[/mm]
>  (ii) [mm]a - b = a~gdw~a \cap b = \emptyset[/mm]
>  
> (iii) [mm]a - b = \emptyset~gdw~a \subseteq b[/mm]
>  (iv) [mm]a - (b-c) = (a - b) \cup (a \cap c)[/mm]
>  
> (v) [mm](a-b)-c = a-(b \cup c)[/mm]
>  
> 2.
> Seien a, b, c Mengen. Dann gilt (Assoziativgesetz):
>  
> (i) [mm](a \cup b) \cup c = a \cup (b \cup c)[/mm]
>  (ii) [mm](a \cap b) \cap c = a \cap (b \cap c)[/mm]
>  
> 3.
>  Für alle Mengen a, b, c gilt (Distributivgesetz):
>  
> (i) [mm](a \cup b) \cap c = (a \cap c) \cup (b \cap c)[/mm]
>  (ii) [mm](a \cap b) \cup c = (a \cup c) \cap (b \cup c)[/mm]
>  
> gdw = "genau dann wenn"
>  Hallo,
>  
> ich beschäftige mich im Moment mit der Mengenlehre anhand
> des Buches von Oliver Deiser, allerdings fehlen mir bei
> diesen Übungen richtige Ansätze. Wie geht man an solche
> Beweise ran?

Hallo,

ich will Dir das an einem Deiner Beispiele kurz andeuten, verwende ansonsten die Suchfunktion, da solltest Du haufenweise Beispiele finden.
Zu Beginn des WS ist dieses Thema stets akut.

Wenn Du an einer konkreten Stelle hängenbleibst, kannst Du aber gern wieder nachfragen!

> (i) [mm](a \cup b) \cup c = a \cup (b \cup c)[/mm]

Man zeigt das elementweise, indem man zeigt, daß jedes Element aus der linken Menge in der rechten liegt, und anschließend die umgekehrte Richtung.
Der Start:
Sei [mm] x\in [/mm] (a [mm] \cup [/mm] b) [mm] \cup [/mm] c
==> x [mm] \in [/mm] (a [mm] \cup [/mm] b) oder x [mm] \in [/mm] c
==> (x [mm] \in [/mm] a oder x [mm] \in [/mm] b) oder x [mm] \in [/mm] c
==> ...


> Und noch eine kleine Frage zu der Definition des relativen
> Komplements:
> "Seien a, b Mengen und a [mm]\subseteq[/mm] b. Dann heißt b - a das
> relative Komplement von a in b. Ist b fixiert, so nennen
> wir b - a kurz das Komplement von a und setzen [mm]a^c = b - a[/mm]."
>  
> Was heißt in diesem Zusammenhang "fixiert"?

Man hat oft die Situation, daß man eine Obermenge M hat, und dann Aussagen beweist über Teilmengen dieser Obermenge M.
Für A [mm] \subseteq [/mm] M bedeutet [mm] A^c [/mm] dann M \ A, also das Komplement bezogen auf diese feste Obermenge.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]