Mengen von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 11:37 Sa 25.04.2009 | Autor: | Hanz |
Aufgabe | Sei M [mm] \subset Mat(n,n;\IR) [/mm] die Menge aller orthogonalen, symmetrischen und positiv definiten Matrizen:
M:={A [mm] \in Mat(n,n;\IR) [/mm] | A orthogonal, symmetrisch, positiv definit}.
Sei N:= O(n) [mm] \cap Mat(n,n;\IZ) [/mm] die Menge aller orthogonalen Matrizen mit ganzzahligen Einträgen:
[mm] N:={A=(a_{ij} \in O(n) | a_{ij} \in \IZ}.
[/mm]
Wieviele Elemente enthalten M bzw. N? Geben Sie eine explizite Beschreibung der Matrizen in M bzw. N an. Bilden M bzw. N mit der Matrixmultiplikation eine Gruppe? |
Hi,
bei dieser Aufgabe komme ich grade irgendwie kaum voran.
Um zu zeigen, dass M bzw. N Gruppen mit der Matrixmultiplikation bilden, muss ich ja die Axiome nachweisen (Kommutativität, Assoziativität, Inverses Element, Neutrales Element).
Dazu muss ich ja aber vorher die beiden ersteren Fragen beantworten können, da ich ja die Gestalt der Matrizen kennen müsste =p
Die Menge M enthält ja alle (nxn)- Matrizen, die orthogonal, symmetrisch und pos. definit sind. Die einzige Matrix, die mir einfällt die alles erfüllt ist die Einheitsmatrix.
Die Menge N enthält alle (nxn)-Matrizen, die ganzzahlige Einträge besitzen und deren Zeilen-/Spaltenvektoren paarweise orthogonal zueinander sind.
Aber ich weiss jetzt ehrlich gesagt gar nicht, wie ich hier rangehen sollte.
Danke schonmal für jede Antwort!
|
|
|
|
Hallo,
zu dieser Aufgabe hat felix heute morgen schon was geschrieben.
Vielleicht kannst Du Dich erstmal dort befruchten und ggf. weitere Fragen auch dort stellen - so braucht das nicht an zwei Stellen bearbeitet zu werden.
Gruß v. Angela
|
|
|
|