matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMengen und Folgen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Mengen und Folgen
Mengen und Folgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen und Folgen: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:27 Do 24.11.2005
Autor: Kuebi

Hallo ihr!

Hab da folgende zwei Aufgäbelchen ans Herz gelegt bekommen:

a) Zeigen sie, dass zwei Intervalle [a,b],[c,d] [mm] \subset \IR [/mm] stets gleichmächtig sind. Ist das Intervall (0,1) gelichmächtig wie [mm] \IR? [/mm]

b) Zu jeder reellen Zahl a gibt es eine Folge [mm] (q_{n})_{n \in \IN} [/mm] mit  [mm] \limes_{n\rightarrow\infty}q_{n} [/mm] = a.

Nun meine beiden Ansätze:

zu a) [a,b] =  [mm] \{m | a \le m \le b} [/mm] = A und [c,d] = [mm] \{ n | c \le n \le d \} [/mm] = B.
Dann ist zu zeigen: [mm] \gamma: [/mm] A [mm] \righarrow [/mm] B, m [mm] \mapsto [/mm] n ist bijektiv.
Stimmt das? Und wie könnte ich dann weiter verfahren?

zu b)
Ich habe angenommen [mm] (q_{n})_{n \in \IN} [/mm] =  [mm] \bruch{1}{n}+a [/mm] zeigt diesen Sachverhalt, da [mm] \bruch{1}{n} [/mm] eine Nullfolge ist, d.h. für n gegen [mm] \infinity [/mm] geht [mm] (q_{n}) [/mm] gegen a. I
Hat das was wahres oder ist das zu sehr Beispiel für einen Beweis?

Viele liebe Grüße

Kübi

        
Bezug
Mengen und Folgen: Aufgabe r?
Status: (Antwort) fertig Status 
Datum: 12:04 Sa 26.11.2005
Autor: leduart

Hallo kübi
> a) Zeigen sie, dass zwei Intervalle [a,b],[c,d] [mm]\subset \IR[/mm]
> stets gleichmächtig sind. Ist das Intervall (0,1)
> gelichmächtig wie [mm]\IR?[/mm]
>  
> b) Zu jeder reellen Zahl a gibt es eine Folge [mm](q_{n})_{n \in \IN}[/mm]
> mit  [mm]\limes_{n\rightarrow\infty}q_{n}[/mm] = a.

So scheint die Aufgabe sinnlos, es ist wahrscheinlich, dass q [mm] \in \IQ [/mm] , dann ist dein Ansatz f sonst wäre ja auch die konstante Folge qn=a ne Lösg.  

> Nun meine beiden Ansätze:
>  
> zu a) [a,b] =  [mm]\{m | a \le m \le b}[/mm] = A und [c,d] = [mm]\{ n | c \le n \le d \}[/mm]
> = B.
>  Dann ist zu zeigen: [mm]\gamma:[/mm] A [mm]\righarrow[/mm] B, m [mm]\mapsto[/mm] n
> ist bijektiv.
> Stimmt das? Und wie könnte ich dann weiter verfahren?

Gib einfach eine bijektive Abbildung an! überleg dir etwa wie du etwa [1,2]  auf [17.3, 100] abbilden würdest.

> zu b)
>  Ich habe angenommen [mm](q_{n})_{n \in \IN}[/mm] =  [mm]\bruch{1}{n}+a[/mm]
> zeigt diesen Sachverhalt, da [mm]\bruch{1}{n}[/mm] eine Nullfolge
> ist, d.h. für n gegen [mm]\infinity[/mm] geht [mm](q_{n})[/mm] gegen a. I
>  Hat das was wahres oder ist das zu sehr Beispiel für einen
> Beweis?

Ein richtiges Beispiel ist ein Beweis, aber siehe oben!  
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]