matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengen, Teilmengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mengenlehre" - Mengen, Teilmengen
Mengen, Teilmengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen, Teilmengen: Frage/Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:25 Mi 05.11.2014
Autor: Martin_Ph

Aufgabe
Gegeben sei die Menge M, welche alle rationalen Zahlen enthält, deren ganzzahliger Zähler und Nenner zwischen 1 und 5 (beide eingeschlossen) liegen und der Zähler kleiner als der Nenner ist.
Weiterhin seien die Teilmengen A,B,C von M gegeben durch die Eigenschaften:

A: Der Nenner ist eine Primzahl
B: Der Zähler ist 2
C: Der Nenner ist genau um eins größer als der Zähler

a) Geben Sie die Mengen M, A, B, C sowohl in der Form [mm] {x\in..|...} [/mm] als auch explizit durch ihre Elemente an

Die Mengen durch Elemente angeben war kein Problem. Bei der Form [mm] {x\in..|...} [/mm] hätte ich allerdings eine frage, ob man das so machen kann wie ich es getan habe:

M= { [mm] x\in\IQ|x=\bruch{a}{b}:(a,b)\in\IZ\wedge(a,b)\in[1,5]\wedge a\le [/mm] b} //kann man dies so schreiben?

A= { [mm] x\in M|b\in\IP [/mm] }

B= { [mm] x\in [/mm] M|a=2 }

C= { [mm] x\in [/mm] M|b=a+1 }

So Frage is nun darf ich dass so machen, sprich reicht bei A,B,C die genauere Definition wie oben gemacht?
Dachte mir da ich [mm] x\in [/mm] M sage gilt alles was bei M definiert ist auch, oder muss ich wirklich bei jeder Menge definieren dass [mm] x=\bruch{a}{b}........... [/mm] ist

        
Bezug
Mengen, Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 05.11.2014
Autor: meili

Hallo,

> Gegeben sei die Menge M, welche alle rationalen Zahlen
> enthält, deren ganzzahliger Zähler und Nenner zwischen 1
> und 5 (beide eingeschlossen) liegen und der Zähler kleiner
> als der Nenner ist.
>  Weiterhin seien die Teilmengen A,B,C von M gegeben durch
> die Eigenschaften:
>  
> A: Der Nenner ist eine Primzahl
>  B: Der Zähler ist 2
>  C: Der Nenner ist genau um eins größer als der Zähler
>  
> a) Geben Sie die Mengen M, A, B, C sowohl in der Form
> [mm]{x\in..|...}[/mm] als auch explizit durch ihre Elemente an
>  Die Mengen durch Elemente angeben war kein Problem. Bei
> der Form [mm]{x\in..|...}[/mm] hätte ich allerdings eine frage, ob
> man das so machen kann wie ich es getan habe:
>  
> M=
> [mm]\{x\in\IQ|x=\bruch{a}{b}:(a,b)\in\IZ\wedge(a,b)\in[1,5]\wedge a\le b\}[/mm]
>  //kann man dies so schreiben?

$(a,b)$ sieht aus wie ein Tupel,
also entweder $a,b [mm] \in \IZ$ [/mm] und $a,b [mm] \in [/mm] [1,5]$ (ohne Klammern) oder
$(a,b) [mm] \in \IZ \times \IZ$ [/mm] und $(a,b) [mm] \in [/mm] [1,5] [mm] \times [/mm] [1,5]$ schreiben.

Es muss $a < b$ heißen, und nicht kleiner gleich.

Sonst ok

>  
> A=  [mm]\{x\in M|b\in\IP\}[/mm]
>  
> B= [mm]\{x\in M|a=2 \}[/mm]
>  
> C=  [mm]\{x\in M|b=a+1 \}[/mm]
>  
> So Frage is nun darf ich dass so machen, sprich reicht bei
> A,B,C die genauere Definition wie oben gemacht?
>  Dachte mir da ich [mm]x\in[/mm] M sage gilt alles was bei M
> definiert ist auch, oder muss ich wirklich bei jeder Menge
> definieren dass [mm]x=\bruch{a}{b}...........[/mm] ist

$x [mm] \in [/mm] M$ reicht, da davor M definiert wurde.
Aber du solltest $x = [mm] \bruch{a}{b} \in [/mm] M$ schreiben, da sonst in dem Teil
nach dem | unverständlich ist, was a und b sein sollen.

Gruß
meili


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]