matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesMengen: Rand & Abschluss
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Mengen: Rand & Abschluss
Mengen: Rand & Abschluss < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Rand & Abschluss: Gleichung beweisen
Status: (Frage) überfällig Status 
Datum: 15:42 Mi 07.01.2009
Autor: NightmareVirus

Aufgabe
X,Y [mm] \subseteq \in [/mm] K (bei uns definiert als [mm] \IC [/mm] oder [mm] \IR [/mm] beliebig). Zeigen Sie:

[mm] \partial(X \cap [/mm] Y) = [mm] (\partial [/mm] X [mm] \cap \overline{Y} [/mm] ) [mm] \cup (\overline{X} \cap \partial [/mm] Y)

Bemerkung:
Sie dürfen [mm] \overline{X \cap Y} [/mm] = [mm] \overline{X} \cap \overline{Y} [/mm] sowie
(X [mm] \cap Y)^\circ [/mm] = [mm] X^\circ \cap Y^\circ [/mm] ohne Beweis verwenden

[mm] \partial [/mm] X bezeichnet bei uns den Rand der Menge X .

Also bei einer solchen Gleichung zeige ich ja per Inklusion, dass jedes Element aus [mm] \partial(X \cap [/mm] Y) auch in [mm] (\partial [/mm] X [mm] \cap \overline{Y} [/mm] ) [mm] \cup (\overline{X} \cap \partial [/mm] Y) und umgekehrt ist.


Also zz. [mm] \partial(X \cap [/mm] Y) [mm] \subseteq (\partial [/mm] X [mm] \cap \overline{Y} [/mm] ) [mm] \cup (\overline{X} \cap \partial [/mm] Y)
und zz. [mm] \partial(X \cap [/mm] Y) [mm] \supseteq (\partial [/mm] X [mm] \cap \overline{Y} [/mm] ) [mm] \cup (\overline{X} \cap \partial [/mm] Y)


Leider komme ich dabei nicht sonderlich weit:
[mm] "\subseteq" [/mm]
a [mm] \in \partial(X \cap [/mm] Y)
per Definition des Randes:
[mm] \Rightarrow [/mm] a [mm] \in \overline{X \cap Y} \backslash [/mm] (X [mm] \cap Y)^\circ [/mm]
dann mit der Bemerkung:
[mm] \Rightarrow [/mm] a [mm] \in \overline{X} \cap \overline{Y} \backslash X^\circ \cap Y^\circ [/mm]


so an dieser Stelle weiss ich nicht weiter. Bin nicht mal sicher obich überhaupt auf dem richtigen Weg bin -.-


[mm] "\supseteq" [/mm]
a [mm] \in (\partial [/mm] X [mm] \cap \overline{Y} [/mm] ) [mm] \cup (\overline{X} \cap \partial [/mm] Y)
Hier fehlt schon im Ansatz eine Idee

ich hoffe mir kann jemand weiterhelfen!

Danke


        
Bezug
Mengen: Rand & Abschluss: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:52 Mi 07.01.2009
Autor: NightmareVirus

ich glaub ich habe jetzt die eine richtung zeigen können:

[mm] "\subseteq" [/mm]
a [mm] \in \partial(X \cap [/mm] Y)
per Definition des Randes:
[mm] \Rightarrow [/mm] a [mm] \in \overline{X \cap Y} \backslash [/mm] (X [mm] \cap Y)^\circ [/mm]
dann mit der Bemerkung:
[mm] \Rightarrow [/mm] a [mm] \in (\overline{X} \cap \overline{Y}) \backslash (X^\circ \cap Y^\circ) [/mm]
[mm] \Rightarrow [/mm] a [mm] \in (\overline{X} \cap \overline{Y}) \backslash X^\circ \cup (\overline{X} \cap \overline{Y}) \backslash Y^\circ [/mm]
[mm] \Rightarrow [/mm] a [mm] \in (\overline{X} \backslash X^\circ) \cap \overline{Y} \cup (\overline{Y} \backslash Y^\circ) \cap \overline{X} [/mm]
[mm] \gdw [/mm] a [mm] \in (\partial [/mm] X [mm] \cap \overline{Y} [/mm] ) [mm] \cup (\overline{X} \cap \partial [/mm] Y)


ist das so richtig?

bei der anderen richtung fehlt mir aber immer noch jede idee...

Bezug
        
Bezug
Mengen: Rand & Abschluss: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:56 Do 08.01.2009
Autor: CrazyMan

Hallo,

leider kann ich dir bei deiner Aufgabe auch nicht weiter helfen, aber ich bearbeite zur Zeit eine ähnliche Aufgabe:

[mm] C(\partial [/mm] X) = [mm] X^\circ \cup (CX^\circ) [/mm]

Meine Frage ist, ob ich das auch ohne Inklusion zeigen kann?
Sprich:

[mm] C(\partial [/mm] X) = C [mm] (\overline{X}\setminus X^\circ) [/mm]
                    = (C [mm] \overline{X}) \setminus (CX^\circ) [/mm]

... und ab hier komme ich nicht weiter.
Ist das denn bis dahin überhaupt zulässig?

Wäre euch sehr dankbar, wenn mir einer helfen könnte.
Gruß

Bezug
                
Bezug
Mengen: Rand & Abschluss: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Do 08.01.2009
Autor: NightmareVirus

Ich vermute mal wir sitzen in der gleichen Veranstaltung ;)

Die Aufgabe habe ich wie folgt gelöst:

z.z.:  [mm] C(\partial [/mm]  X) =  [mm] X^\circ \cup (CX^\circ) [/mm]

Zunächst ist ja per Definition:
[mm] \partial [/mm] X =  [mm] \overline{X}\setminus X^\circ [/mm]
soweit hattest du das ja jetzt auch schon. Nun ich hab einfach eine Menge definiert die genau diesen Ausdruck beschreibt:
[mm] \overline{X}\setminus X^\circ [/mm]  = {x | x [mm] \in \overline{X} \wedge [/mm] x [mm] \not\in X^\circ [/mm] }

Daraus folgere ich jetzt:
[mm] C(\partial [/mm]  X) = {x | x [mm] \not\in \overline{X} \vee [/mm] x [mm] \in X^\circ [/mm] }
das ist aber offensichtlich
= [mm] C\overline{X} \cup X^\circ [/mm]

Mit der Dualität [mm] C\overline{X} [/mm] = [mm] (CX)^\circ [/mm]
ergibt sich
[mm] C\overline{X} \cup X^\circ [/mm] = [mm] X^\circ \cup (CX)^\circ [/mm]


Bezug
                        
Bezug
Mengen: Rand & Abschluss: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:31 Do 08.01.2009
Autor: CrazyMan

Hi,

vielen Dank für deine Antwort. Bin schon fast dran verzweifelt.
Ja, sitzten scheinbar echt in derselben Vorlesung.

Bist du denn beim zweiten Teil deiner Aufgabe schon weiter gekommen?

Gruß CrazyMan

Bezug
                
Bezug
Mengen: Rand & Abschluss: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 10.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Mengen: Rand & Abschluss: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 09.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]