matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Mengen
Mengen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Frage
Status: (Frage) beantwortet Status 
Datum: 19:15 Mi 20.04.2005
Autor: Limboman

Hallo ihr!
Könnt ihr mir bitte Helfen?
Ich habe ein Problem und weiß einfach nicht was ich tun soll.

Sei M eine Menge und S [mm] \subset [/mm] P(M). Zeigen Sie,daß

C [mm] \bigcup_{A\inS} [/mm] A = [mm] \bigcap_{A\inS} [/mm] CA ,
C [mm] \bigcap_{A\inS} [/mm] A = [mm] \bigcup_{A\inS} [/mm] CA .

Ich weiß das C das Komplement ist und alles beinhaltet was nicht in der Menge M liegt.
S [mm] \subset [/mm] P(M): Was als Beispiel bei einer Menge M={1,2,3} die Potenzmenge
P(M)={ [mm] \emptyset,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}} [/mm] wäre.

Wenn man nun C mit drei der Teilmengen vereinigt beinhaltet das alles außer die restlichen
fünf Teilmengen der Potenzmenge.

Wenn ich aber nun schneide habe ich doch nicht das selbe. Oder? Und wenn wie bekomme
ich das aufs Papier?

Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Mi 20.04.2005
Autor: Micha


> Hallo ihr!
>  Könnt ihr mir bitte Helfen?
>  Ich habe ein Problem und weiß einfach nicht was ich tun
> soll.
>  
> Sei M eine Menge und S [mm]\subset[/mm] P(M). Zeigen Sie,daß
>  
> C [mm]\bigcup_{A\inS}[/mm] A = [mm]\bigcap_{A\inS}[/mm] CA ,
>  C [mm]\bigcap_{A\inS}[/mm] A = [mm]\bigcup_{A\inS}[/mm] CA .

Zunächst einmal die erste Aufgabe: C [mm]\bigcup_{A \in S}[/mm] A = [mm]\bigcap_{A \in S}[/mm] CA ,

Wir zeigen das über äquivalente Aussagen:

[mm] x \in C\left( \bigcup_{A \in S} A \right) [/mm]
[mm]\gdw x \not\in \bigcup_{A \in S} A[/mm]
[mm] \gdw \forall A \in S: x \not\in A [/mm]
[mm]\gdw \forall A \in S: x \in C(A) [/mm]
[mm]\gdw x \in \bigcap_{A\inS} C (A) [/mm]

Der zweite Teil analog:

[mm] x \in C\left( \bigcap_{A \in S} A \right) [/mm]
[mm]\gdw x \not\in \bigcap_{A \in S} A [/mm]
[mm]\gdw \exists A \in S: x \not\in A [/mm]
[mm]\gdw \exists A \in S: x \in C(A) [/mm]
[mm]\gdw x \in \bigcup_{A\inS} C (A) [/mm]


  

> Ich weiß das C das Komplement ist und alles beinhaltet was
> nicht in der Menge M liegt.
>  S [mm]\subset[/mm] P(M): Was als Beispiel bei einer Menge M={1,2,3}
> die Potenzmenge
>  [mm]P(M)=\{ \emptyset,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}[/mm]
> wäre.
>  
> Wenn man nun C mit drei der Teilmengen vereinigt beinhaltet
> das alles außer die restlichen
>  fünf Teilmengen der Potenzmenge.

Ja obwohl ich deine Formulierung etwas komisch finde, da C keine eigene Menge ist, sondern ein Mengenoperator!

>  

Ich hoffe dir geholfen zu haben!

Gruß Micha ;-)

Bezug
                
Bezug
Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:46 Mi 20.04.2005
Autor: Limboman

Vielen Dank für deine Hilfe.
Jetzt weiß ich auch wo ich mein Fehler gemacht habe.

Also vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]