matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Mengen
Mengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Richtig ?
Status: (Frage) beantwortet Status 
Datum: 10:32 So 24.10.2004
Autor: KingSebtor

Hi ist das so richtig ?

Falls M  [mm] \subseteq [/mm] N  und N  [mm] \subseteq [/mm]  P    dann gilt M [mm] \subseteq [/mm] P

[mm] \forall [/mm] x [mm] \in [/mm] M : x [mm] \in [/mm] N   [mm] \wedge \forall [/mm] x [mm] \in [/mm] N : x [mm] \in [/mm] P

[mm] \forall [/mm] x [mm] \in [/mm] M [mm] \forall [/mm] x [mm] \in [/mm] N : x [mm] \in [/mm] N  [mm] \wedge [/mm] x [mm] \in [/mm] P

[mm] \forall [/mm] x [mm] \in [/mm] M : x [mm] \in [/mm] P  [mm] \wedge \forall [/mm] x [mm] \in [/mm] N : x [mm] \in [/mm] N

M   [mm] \subseteq [/mm]  P


Danke

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mengen: Formales Problem
Status: (Antwort) fertig Status 
Datum: 10:44 So 24.10.2004
Autor: Gnometech

Grüße!

So klappt es leider nicht... es gibt ein formales Problem in dieser Zeile:

> [mm]\forall[/mm] x [mm]\in[/mm] M [mm]\forall[/mm] x [mm]\in[/mm] N : x [mm]\in[/mm] N  [mm]\wedge[/mm] x [mm]\in[/mm] P

Du hast hier die gleiche Variable zwei Mal quantifiziert - und man weiß sozusagen nicht, welches $x$ hinten zu welchem Quantor gehört.

Eine Variable doppelt zu belegen gibt Probleme... deshalb müßte die Aussage so lauten:

$ [mm] \forall \; [/mm] x [mm] \in [/mm] M [mm] \; \forall \; [/mm] y [mm] \in [/mm] N : x [mm] \in [/mm] N [mm] \wedge [/mm] y [mm] \in [/mm] P$

Aber ich würde Dir empfehlen, anders zu argumentieren.

Ich meine: sei $x [mm] \in [/mm] M$. Dann gilt wegen $M [mm] \subseteq [/mm] N$ auch $x [mm] \in [/mm] N$. Und wegen $N [mm] \subseteq [/mm] P$ folgt: $x [mm] \in [/mm] P$. Und das war zu zeigen. :-)

Bei Aufgaben dieser Art ist es schwer, sich nicht in dieser Logik zu verzetteln, ich weiß... aber das übt sich ein. :-)

Schönen Tag,

Lars

Bezug
                
Bezug
Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 So 24.10.2004
Autor: KingSebtor

JO das  ist klar ! klingt gut :-)


und wie ist das dann bei M  [mm] \subseteq [/mm] P und N  [mm] \subseteq [/mm] P dann gilt  M  [mm] \cup [/mm] P  [mm] \subseteq [/mm] P   ?

Bezug
                        
Bezug
Mengen: Formalitäten
Status: (Antwort) fertig Status 
Datum: 11:01 So 24.10.2004
Autor: Gnometech

Nochmal guten Morgen!

Naja, die Aussage $X [mm] \subseteq [/mm] Y$ übersetzt sich ja formal so:

[mm] $\forall \; [/mm] x [mm] \in [/mm] X : x [mm] \in [/mm] Y$.

Und das muß man eben zeigen. Also es gilt $M [mm] \subseteq [/mm] P$ und $N [mm] \subseteq [/mm] P$. Und gezeigt werden soll (vermutlich), dass folgt: $M [mm] \cup [/mm] N [mm] \subseteq [/mm] P$.

Dann gehst Du so vor: sei $x [mm] \in [/mm] M [mm] \cup [/mm] N$ beliebig. Dann gilt $x [mm] \in [/mm] M$ oder $x [mm] \in [/mm] N$. Im ersten Fall benutzt Du die eine Voraussetzung und im zweiten die andere... und dann sollte herauskommen, was Du willst.

Versuch es mal... viel Erfolg!

Lars

Bezug
                        
Bezug
Mengen: stimmt...
Status: (Antwort) fertig Status 
Datum: 12:12 So 24.10.2004
Autor: Bastiane

Hallo!

> und wie ist das dann bei M  [mm]\subseteq[/mm] P und N  [mm]\subseteq[/mm] P
> dann gilt  M  [mm]\cup[/mm] P  [mm]\subseteq[/mm] P   ?

Ja, das müsste stimmen, auch wenn ich nicht weiß, was das mit deiner Aufgabe zu tun hat...
Denn weil M [mm] \subseteq [/mm] P [mm] \Rightarrow [/mm] M [mm] \cup [/mm] P=P und P [mm] \subseteq [/mm] P.
MfG
:-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]