matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieMenge in 2-dim Borel-Sigma-Alg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Maßtheorie" - Menge in 2-dim Borel-Sigma-Alg
Menge in 2-dim Borel-Sigma-Alg < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge in 2-dim Borel-Sigma-Alg: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 17.05.2012
Autor: steppenhahn

Aufgabe
Zeige: [mm] $A:=\{(x,x) \in \IR\}$ [/mm] ist in [mm] $B_{\IR^2}$ [/mm] enthalten!



Hallo,

ich möchte zeigen, dass für zwei messbare Funktion $X,Y: [mm] (\Omega, \mathcal{A}) \to (\IR, B_{\IR})$ [/mm] die Menge [mm] $\{X = Y\} \in \mathcal{A}$ [/mm] ist.

Dafür habe ich benutzt, dass die Funktion $(X,Y): [mm] (\Omega, \mathcal{A}) \to (\IR^2, B_{\IR^2})$ [/mm] messbar ist und

[mm] $\{X = Y\} [/mm] = [mm] (X,Y)^{-1}(A)$ [/mm] gilt.

Es muss also nur noch $A [mm] \in B_{\IR^2}$ [/mm] gezeigt werden.
Dafür würde ich wie folgt vorgehen:

Betrachte [mm] A_n [/mm] := [mm] \bigcup_{k\in \IZ}\left[k*\frac{1}{n} ,(k+1)*\frac{1}{n}\right)^2 \in B_{\IR^2}$, [/mm] dann gilt $A = [mm] \bigcap_{n\in\IN} A_n \in B_{\IR^2}$. [/mm]

Ist es wirklich so "kompliziert", zu zeigen, dass [mm] $\{X = Y\} \in \mathcal{A}$ [/mm] ist? Gibt es da keine leichtere Möglichkeit (z.B. mit einem Satz)?


Danke für Eure Hilfe und viele Grüße,
Stefan

        
Bezug
Menge in 2-dim Borel-Sigma-Alg: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Do 17.05.2012
Autor: SEcki


> Ist es wirklich so "kompliziert", zu zeigen, dass [mm]\{X = Y\} \in \mathcal{A}[/mm]
> ist? Gibt es da keine leichtere Möglichkeit (z.B. mit
> einem Satz)?

Soweit ich bisher Definitionen gesehen habe, gehören zur Borel-Sigma-Algebra auch immer alle abgeschlossenen Mengen.

SEcki


Bezug
        
Bezug
Menge in 2-dim Borel-Sigma-Alg: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Fr 18.05.2012
Autor: fred97

Ergänzend zu Secki:

Die Borelsche [mm] \sigma [/mm] - Algebra wird von den abgeschlossenen Mengen erzeugt !

FRED

Bezug
                
Bezug
Menge in 2-dim Borel-Sigma-Alg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Di 22.05.2012
Autor: steppenhahn

Vielen Dank für Eure Antworten!

Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]