matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 5-7Menge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 5-7" - Menge
Menge < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 So 14.08.2005
Autor: nitro1185

Hallo!!Mir ist bei der Nachhilfe wirklich eine komische Frage untergetaucht.

Fragestellung: Überprüfe anhand der Lösungsmenge ob die Gleichungen über R äquivalent sind. Falls nicht überprüfe ob zwischen den Bedingungen ein NOTWENDIGER oder HINREICHENDER oder ob keiner dieser Zusammenhänge besteht. Setze den passenden Pfeil oder das Symbo "-"!!

x>3 _________  x>5  L1= ]3, [mm] \infty [/mm] [    L2=]5, [mm] \infty [/mm] ]

Man soll zwischen äquivalent  notwendig hinreichend oder weder/noch ankreuzen bzw. entscheiden!!

Für mich ist das eine komische fragestellung. 2 Ungleichungen sind äquivalent wenn die lösungsmengen gleich sind.

Ich meine wenn x > 5 => x>3 . viell. habt ihr eine idee.

mfg daniel

        
Bezug
Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 So 14.08.2005
Autor: Andi

Hallo Daniel,

> Fragestellung: Überprüfe anhand der Lösungsmenge ob die
> Gleichungen über R äquivalent sind. Falls nicht überprüfe
> ob zwischen den Bedingungen ein NOTWENDIGER oder
> HINREICHENDER oder ob keiner dieser Zusammenhänge besteht.
> Setze den passenden Pfeil oder das Symbo "-"!!
>  
> x>3 _________  x>5  L1= ]3, [mm]\infty[/mm] [    L2=]5, [mm]\infty[/mm] ]

Zunächst bilde ich mir ein, dass dir bei der zweiten Lösungsmenge ein kleiner Tippfehler unterlaufen ist. [mm]L_2[/mm] muss heißen: [mm] L_2=]5; \infty[ [/mm]. Aber das ist nicht weiter wichtig. Nun zu deiner Frage.

Ich denke es müsste folgendermaßen heißen:

x>5 ist eine notwendige Bedingung für x>3

[mm] x>3 \Leftarrow x>5[/mm]

Das heißt, wenn x>5 wahr ist, dann ist auch x>3 wahr.

> Man soll zwischen äquivalent  notwendig hinreichend oder
> weder/noch ankreuzen bzw. entscheiden!!
>  
> Für mich ist das eine komische fragestellung. 2
> Ungleichungen sind äquivalent wenn die lösungsmengen gleich
> sind.
>  
> Ich meine wenn x > 5 => x>3 . viell. habt ihr eine idee.

Wie gesagt, ich seh das genauso wie du.
Ich lasse die Frage mal auf teilweise beantwortet,
es will bestimmt noch eine höhere Autorität etwas dazu sagen, als ich es bin *g*

Mit freundlichen Grüßen,
Andi

Bezug
        
Bezug
Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 So 14.08.2005
Autor: Christian

Hallo.

Obgleich ich mich nicht als besonders große Autorität sehe, möchte ich es dennoch wagen, Andi zu widersprechen.
Ich denke, x>3 ist eine notwendige Bedingung für x>5, denn falls x<3, dann ist keinesfalls x>5.

So ist es zumindest für mein Sprachgefühl richtig (und das ist leider hier für mich die Instanz, da ich die Definition einer "notwendigen Bedingung" erstmal für mich selbst erfinden müßte).
Ich denke aber, wenn man es definiert, müßte es in etwa so aussehen:

Für Aussageformen A,B
heißt $A_$ notwendige Bedingung für $B_$ [mm] $\gdw [/mm] [B [mm] \Rightarrow [/mm] A]$.

Gruß,
Christian

Bezug
                
Bezug
Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 So 14.08.2005
Autor: Christian

Im Gegensatz dazu ist für mein Gefühl
$A_$ hinreichende Bedingung für $B_$ [mm] $\gdw [/mm] [A [mm] \Rightarrow [/mm] B]$,
so daß man insgesamt hat:
$ [A [mm] \gdw [/mm] B] [mm] \gdw [/mm] A_$ notwendige und hinreichende Bedingung für $B_$.

Gruß,
Christian

Bezug
        
Bezug
Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 So 14.08.2005
Autor: Sigrid

Hallo Daniel,
> Hallo!!Mir ist bei der Nachhilfe wirklich eine komische
> Frage untergetaucht.
>  
> Fragestellung: Überprüfe anhand der Lösungsmenge ob die
> Gleichungen über R äquivalent sind. Falls nicht überprüfe
> ob zwischen den Bedingungen ein NOTWENDIGER oder
> HINREICHENDER oder ob keiner dieser Zusammenhänge besteht.
> Setze den passenden Pfeil oder das Symbo "-"!!
>  
> x>3 _________  x>5  L1= ]3, [mm]\infty[/mm] [    L2=]5, [mm]\infty[/mm] ]
>  
> Man soll zwischen äquivalent  notwendig hinreichend oder
> weder/noch ankreuzen bzw. entscheiden!!
>  
> Für mich ist das eine komische fragestellung. 2
> Ungleichungen sind äquivalent wenn die lösungsmengen gleich
> sind.
>  
> Ich meine wenn x > 5 => x>3 . viell. habt ihr eine idee.

Christian hat recht: x>3 ist eine notwendige Bedingung für x>5.
Umgekehrt ist x>5 eine hinreichende Bedingung für x>3.
Das heißt, wenn du irgendwie schon weißt, dass x>5 ist, dann reicht diese Bedingung für den Nachweis, dass auch gilt x>3.
Allgemein:
Wenn du zwei Aussagen A und B hast, von denen du weißt, das gilt:
[mm] A \Rightarrow B [/mm]

dann ist A hinreichende Bedingung für B, denn es reicht A zu zeigen, um B zu erhalten.

B ist eine notwendige Bedingung für A, denn wenn B nicht erfüllt ist, kann auch A nicht erfüllt sein.

Alles klar? Sonst frag noch mal nach.

Gruß
Sigrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]