matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikMehrstufige Modelle
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "mathematische Statistik" - Mehrstufige Modelle
Mehrstufige Modelle < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrstufige Modelle: Aufgabe 1
Status: (Frage) überfällig Status 
Datum: 14:56 Mo 31.05.2010
Autor: Ikit

Aufgabe
In den täglichen Abgasen einer Müllverbrennungsanlage sei [mm] x_1 [/mm] die Menge der Schwebstoffe vor der Inbetriebnahme einer zusätzlichen Abgasreinigung und [mm] x_2 [/mm] die Menge danach (in Tonnen). Unter der Voraussetzung, dass [mm] x_1 [/mm] durch eine Beta(3,1)-Verteilung modelliert werden kann und x2 gleichverteilt zwischen 0 und [mm] \bruch{x_1}{2} [/mm] ist, bestimmen Sie
a)  die R-Dichte für ein Modell des Gesamtversuchs und skizzieren Sie diese,
b)  die  Wahrscheinlichkeit,  dass  nach  Inbetriebnahme  noch  mehr  als  0,3t Schwebstoffe anfallen.

Beta(3,1) Verteilung fuer [mm] x_1 [/mm] hab ich ausgerechnet und duerfte der Funktion [mm] 3x^2 [/mm] im Intervall 0 < [mm] x_1 [/mm] < 1 (ansonsten 0) entsprechen.
Gleichverteilung fuer [mm] x_2 [/mm] duerfte [mm] \bruch{2}{x_1} [/mm] im Intervall 0 < [mm] x_2 [/mm] < [mm] \bruch{x_1}{2} [/mm] und sonst 0 sein.

R Dichte f sollte doch dann der folgenden Funktion entsprechen:

[mm] f=\begin{cases} 3x_{1}^{2}, & \mbox{für } \bruch{x_1}{2} \le x_2 < 1 \\ 6x_1, & \mbox{für } 0 < x_2 < \bruch{x_1}{2} \\ 0, & \mbox{sonst} \end{cases} [/mm]

Das Problem ist wie man die Wahrscheinlichkeit bei Aufgabe b) mit einem Doppelintegral berechnet. Mir ist weder klar was ich integrieren soll, noch in welchen Grenzen.

        
Bezug
Mehrstufige Modelle: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 02.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]